Repository logo
 

Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries.

Accepted version
Peer-reviewed

Repository DOI


Type

Article

Change log

Authors

Huang, Hai-Bo 
Yang, Yue 
Chen, Li-Hua 
Wang, Yun 
Huang, Shao-Zhuan 

Abstract

Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500, obtained by calcination at 500 °C in nitrogen, contains an anatase TiO2-C heterostructure with a specific surface area of 66.5 m(2) g(-1). When evaluated as an anode material at 0.5 C, TiO2/C-500 exhibits a high and reversible lithium storage capacity of 188 mA h g(-1), an excellent initial capacity of 283 mA h g(-1), a long cycle life with a 94% coulombic efficiency preserved after 200 cycles, and a very low charge transfer resistance. The superior electrochemical performance of TiO2/C-500 is attributed to the synergistic effect of high electrical conductivity, anatase TiO2-C heterostructure, mesopore-macropore network and robust scaffolding architecture. The current material strategy affords a general approach for the design of complex inorganic nanocomposites with structural stability, and tunable and interconnected hierarchical porosity that may lead to the next generation of electrochemical supercapacitors with high energy efficiency and superior power density.

Description

Keywords

0912 Materials Engineering, 0306 Physical Chemistry (incl. Structural)

Journal Title

Nanoscale

Conference Name

Journal ISSN

2040-3364
2040-3372

Volume Title

8

Publisher

Royal Society of Chemistry (RSC)
Sponsorship
Sincere gratitude goes to funding agencies for financially support: Y. Xu to NNSF China (2117 1067, 21373100), Jilin Provincial Talent Fund (802110000412) and Tang Aoqing Professor Fund of Jilin University (450091105161). T. Hasan to the Royal Academy of Engineering Research Fellowship. B.L. Su to the Thousand Talents Program of China (“Expert of the State” position), Clare Hall Life Membership at the Clare Hall College and the financial support of the Department of Chemistry, University of Cambridge, L.H. Chen and Y. Li to the Department of Education of Hubei Province for “Chutian Scholar” program, NNSF China (21301133), Hubei Natural Science Foundation (2014CFB1 60, 2015CFB428) and the financial support of SRF for ROCS (SEM [2015]311).