Show simple item record

dc.contributor.authorParolini, Luciaen
dc.contributor.authorKotar, Jurijen
dc.contributor.authorDi, Michele Lorenzoen
dc.contributor.authorMognetti, Bortolo Men
dc.date.accessioned2016-02-10T15:56:27Z
dc.date.available2016-02-10T15:56:27Z
dc.date.issued2016-02-04en
dc.identifier.citationParolini et al. ACS Nano (2016). doi: 10.1021/acsnano.5b07201en
dc.identifier.issn1936-0851
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/253700
dc.description.abstractThe selectivity of Watson−Crick base pairing has allowed the design of DNA-based functional materials bearing an unprecedented level of accuracy. Examples include DNA origami, made of tiles assembling into arbitrarily complex shapes, and DNA coated particles featuring rich phase behaviors. Frequently, the realization of conceptual DNA-nanotechnology designs has been hampered by the lack of strategies for effectively controlling relaxations. In this article, we address the problem of kinetic control on DNA-mediated interactions between Brownian objects. We design a kinetic pathway based on toehold-exchange mechanisms that enables rearrangement of DNA bonds without the need for thermal denaturation, and test it on suspensions of DNA-functionalized liposomes, demonstrating tunability of aggregation rates over more than 1 order of magnitude. While the possibility to design complex phase behaviors using DNA as a glue is already well recognized, our results demonstrate control also over the kinetics of such systems.
dc.description.sponsorshipL.P., L.D.M. and J.K. acknowledge support from the EPRSC Programme Grant CAPITALS number EP/J017566/1. L.D.M. acknowledges support from the Oppenheimer Fund and Emmanuel College Cambridge. B.M.M. acknowledges support from the Univeristé Libre de Bruxelles (ULB).
dc.languageEnglishen
dc.language.isoenen
dc.publisherAmerican Chemical Society
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectDNAen
dc.subjectkineticsen
dc.subjectself-assemblyen
dc.subjectliposomesen
dc.subjecttoe-holdingen
dc.subjectaggregationen
dc.titleControlling Self-Assembly Kinetics of DNA-Functionalized Liposomes Using Toehold Exchange Mechanismen
dc.typeArticle
dc.description.versionThis is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/10.1021/acsnano.5b07201en
prism.endingPage2398
prism.publicationDate2016en
prism.publicationNameACS Nanoen
prism.startingPage2392
prism.volume10en
dc.rioxxterms.funderEPSRC
dc.rioxxterms.projectidEP/J017566/1
datacite.cites.urlhttps://www.repository.cam.ac.uk/handle/1810/253615
rioxxterms.versionofrecord10.1021/acsnano.5b07201en
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/en
rioxxterms.licenseref.startdate2016-02-04en
dc.identifier.eissn1936-086X
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idLeverhulme Trust (ECF-2015-494)
cam.orpheus.successThu Jan 30 12:55:14 GMT 2020 - The item has an open VoR version.*
rioxxterms.freetoread.startdate2100-01-01


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International