Repository logo
 

Self-Assembly of Structures with Addressable Complexity.


Change log

Authors

Jacobs, William M 

Abstract

The self-assembly of structures with "addressable complexity", where every component is distinct and is programmed to occupy a specific location within a target structure, is a promising route to engineering materials with precisely defined morphologies. Because systems with many components are inherently complicated, one might assume that the chances of successful self-assembly are extraordinarily small. Yet recent advances suggest otherwise: addressable structures with hundreds of distinct building blocks have been designed and assembled with nanometer precision. Despite this remarkable success, it is often challenging to optimize a self-assembly reaction to ensure that the intended structure is kinetically accessible. In this Perspective, we focus on the prediction of kinetic pathways for self-assembly and implications for the design of robust experimental protocols. The development of general principles to predict these pathways will enable the engineering of complex materials using a much wider range of building blocks than is currently possible.

Description

Keywords

0303 Macromolecular and Materials Chemistry, Biotechnology

Journal Title

J Am Chem Soc

Conference Name

Journal ISSN

0002-7863
1520-5126

Volume Title

Publisher

American Chemical Society (ACS)
Sponsorship
Engineering and Physical Sciences Research Council (EP/I001352/1)
This work was carried out with support from the Engineering and Physical Sciences Research Council Programme Grant EP/I001352/1. We would like to acknowledge discussions with Aleks Reinhardt, Rebecca Schulman, Thomas Ouldridge, Oleg Gang and Alexei Tkachenko. DF acknowledges the hospitality of the NYU Center for Soft Matter Research.