A comparison of the optical properties of InGaN/GaN multiple quantum well structures grown with and without Si-doped InGaN prelayers
View / Open Files
Authors
Davies, MJ
Kappers, Menno
Publication Date
2016-02-07Journal Title
Journal of Applied Physics
ISSN
0021-8979
Publisher
AIP Publishing
Volume
119
Pages
0557081-0557088
Language
English
Type
Article
Metadata
Show full item recordCitation
Davies, M., Hammersley, S., Massabuau, F., Dawson, P., Oliver, R., Kappers, M., & Humphreys, C. (2016). A comparison of the optical properties of InGaN/GaN multiple quantum well structures grown with and without Si-doped InGaN prelayers. Journal of Applied Physics, 119 0557081-0557088. https://doi.org/10.1063/1.4941321
Abstract
In this paper, we report on a detailed spectroscopic study of the optical properties of InGaN/GaN multiple quantum well structures, both with and without a Si-doped InGaN prelayer. In photoluminescence and photoluminescence excitation spectroscopy, a 2nd emission band, occurring at a higher energy, was identified in the spectrum of the multiple quantum well structure containing the InGaN prelayer, originating from the first quantum well in the stack. Band structure calculations revealed that a reduction in the resultant electric field occurred in the quantum well immediately adjacent to the InGaN prelayer, therefore leading to a reduction in the strength of the quantum con- fined Stark effect in this quantum well. The partial suppression of the quantum confined Stark effect in this quantum well led to a modified (higher) emission energy and increased radiative recombination rate. Therefore, we ascribed the origin of the high energy emission band to recombination from the 1st quantum well in the structure. Study of the temperature dependent recombination dynamics of both samples showed that the decay time measured across the spectrum was strongly influenced by the 1st quantum well in the stack (in the sample containing the prelayer) leading to a shorter average room temperature lifetime in this sample. The room temperature internal quantum efficiency of the prelayer containing sample was found to be higher than the reference sample (36% compared to 25%) which was thus attributed to the faster radiative recombination rate of the 1st quantum well providing a recombination pathway that is more competitive with nonradiative recombination processes.
Keywords
photoluminescence, emission spectra, electric fields, multiple quantum wells, photons
Sponsorship
This work was carried out with the financial support of the United Kingdom Engineering and Physical Sciences Research Council under Grant Nos. EP/I012591/1 and EP/ H011676/1.
Funder references
Engineering and Physical Sciences Research Council (EP/I012591/1)
European Research Council (279361)
Engineering and Physical Sciences Research Council (EP/H019324/1)
Engineering and Physical Sciences Research Council (EP/M010589/1)
Identifiers
External DOI: https://doi.org/10.1063/1.4941321
This record's URL: https://www.repository.cam.ac.uk/handle/1810/253847
Rights
Attribution 2.0 UK: England & Wales
Licence URL: http://creativecommons.org/licenses/by/2.0/uk/
Statistics
Recommended or similar items
The following licence files are associated with this item: