Show simple item record

dc.contributor.authorRichardson, Jeremy Oen
dc.contributor.authorPérez, Cristóbalen
dc.contributor.authorLobsiger, Simonen
dc.contributor.authorReid, Adam Aen
dc.contributor.authorTemelso, Berhaneen
dc.contributor.authorShields, George Cen
dc.contributor.authorKisiel, Zbigniewen
dc.contributor.authorWales, Daviden
dc.contributor.authorPate, Brooks Hen
dc.contributor.authorAlthorpe, Stuarten
dc.date.accessioned2016-02-25T11:20:39Z
dc.date.available2016-02-25T11:20:39Z
dc.date.issued2016-03-18en
dc.identifier.citationRichardson et al. Science (2016) Vol. 351, Issue 6279, pp. 1310-1313 doi: 10.1126/science.aae0012en
dc.identifier.issn0036-8075
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/254015
dc.description.abstractThe nature of the intermolecular forces between water molecules is the same in small hydrogen-bonded clusters as in the bulk. The rotational spectra of the clusters therefore give insight into the intermolecular forces present in liquid water and ice. The water hexamer is the smallest water cluster to support low-energy structures with branched three-dimensional hydrogen-bond networks, rather than cyclic two-dimensional topologies. Here we report measurements of splitting patterns in rotational transitions of the water hexamer prism, and we used quantum simulations to show that they result from geared and antigeared rotations of a pair of water molecules. Unlike previously reported tunneling motions in water clusters, the geared motion involves the concerted breaking of two hydrogen bonds. Similar types of motion may be feasible in interfacial and confined water.
dc.description.sponsorshipThe authors acknowledge financial support from a European Union COFUND/Durham Junior Research Fellowship (JOR), a Research Fellowship from the Alexander von Humboldt Foundation (CP) the U.S. National Science Foundation grants CHE-0960074, CHE-1213521 and CHE-1229354, the Swiss National Science Foundation grant PBBEP2-144907 (SL), the UK Engineering and Physical Sciences Research Council (AAR, SCA, DJW) and a grant from the Polish National Science Centre, decision number DEC/2011/02/A/ST2/00298 (ZK).
dc.languageEnglishen
dc.language.isoenen
dc.publisherAmerican Association for the Advancement of Science
dc.titleConcerted hydrogen-bond breaking by quantum tunneling in the water hexamer prismen
dc.typeArticle
dc.provenanceOA-7221
dc.description.versionThis is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via http://dx.doi.org/10.1126/science.aae0012en
prism.endingPage1313
prism.publicationDate2016en
prism.publicationNameScienceen
prism.startingPage1310
prism.volume351en
dc.rioxxterms.funderEPSRC
dc.rioxxterms.funderNSF
dc.rioxxterms.projectidCHE-0960074
dc.rioxxterms.projectidCHE-1213521
dc.rioxxterms.projectidCHE-1229354
rioxxterms.versionofrecord10.1126/science.aae0012en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2016-03-18en
dc.contributor.orcidWales, David [0000-0002-3555-6645]
dc.contributor.orcidAlthorpe, Stuart [0000-0003-1288-8070]
dc.identifier.eissn1095-9203
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/N035003/1)
pubs.funder-project-idEPSRC (EP/L010518/1)
rioxxterms.freetoread.startdate2016-09-18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record