Repository logo
 

Prediction of noise from serrated trailing edges

Accepted version
Peer-reviewed

Repository DOI


Type

Article

Change log

Authors

Azarpeyvand, M 
Sinayoko, S 

Abstract

jats:pA new analytical model is developed for the prediction of noise from serrated trailing edges. The model generalizes Amiet’s trailing-edge noise theory to sawtooth trailing edges, resulting in a complicated partial differential equation. The equation is then solved by means of a Fourier expansion technique combined with an iterative procedure. The solution is validated through comparison with the finite element method for a variety of serrations at different Mach numbers. The results obtained using the new model predict noise reduction of up to 10 dB at 90jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112016001324_inline1" />jats:tex-math</jats:tex-math></jats:alternatives></jats:inline-formula> above the trailing edge, which is more realistic than predictions based on Howe’s model and also more consistent with experimental observations. A thorough analytical and numerical analysis of the physical mechanism is carried out and suggests that the noise reduction due to serration originates primarily from interference effects near the trailing edge. A closer inspection of the proposed mathematical model has led to the development of two criteria for the effectiveness of the trailing-edge serrations, consistent but more general than those proposed by Howe. While experimental investigations often focus on noise reduction at 90jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112016001324_inline2" />jats:tex-math</jats:tex-math></jats:alternatives></jats:inline-formula> above the trailing edge, the new analytical model shows that the destructive interference scattering effects due to the serrations cause significant noise reduction at large polar angles, near the leading edge. It has also been observed that serrations can significantly change the directivity characteristics of the aerofoil at high frequencies and even lead to noise increase at high Mach numbers.</jats:p>

Description

Keywords

aeroacoustics, noise control, turbelent boundary layers

Journal Title

Journal of Fluid Mechanics

Conference Name

Journal ISSN

0022-1120
1469-7645

Volume Title

793

Publisher

Cambridge University Press (CUP)
Sponsorship
The first author (BL) wishes to gratefully acknowledge the financial support co-funded by the Cambridge Commonwealth European and International Trust and China Scholarship Council. The second author (MA) would like to acknowledge the financial support of the Royal Academy of Engineering. The third author (SS) wishes to gratefully acknowledge the support of the Royal Commission for the exhibition of 1851.