Show simple item record

dc.contributor.authorLindon, Cathen
dc.contributor.authorGrant, Rhysen
dc.contributor.authorMin, Mingweien
dc.date.accessioned2016-03-04T13:03:30Z
dc.date.available2016-03-04T13:03:30Z
dc.date.issued2016-01-18en
dc.identifier.citationLindon et al. Frontiers in Oncology (2016) Vol. 5 Item 307. doi: 10.3389/fonc.2015.00307en
dc.identifier.issn2234-943X
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/254177
dc.description.abstractThe Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly. Beyond the spatial control conferred by different binding partners, Aurora kinases are subject to temporal control of their activation and inactivation. Ubiquitin-mediated proteolysis is a critical route to irreversible inactivation of these kinases, which must occur for ordered transition from mitosis back to interphase. Both AurA and AurB undergo targeted proteolysis after anaphase onset as substrates of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, even while they continue to regulate steps during mitotic exit. Temporal control of Aurora kinase destruction ensures that AurB remains active at the midbody during cytokinesis long after AurA activity has been largely eliminated from the cell. Differential destruction of Aurora kinases is achieved despite the fact that they are targeted at the same time and by the same ubiquitin ligase, making these substrates an interesting case study for investigating molecular determinants of ubiquitin-mediated proteolysis in higher eukaryotes. The prevalence of Aurora overexpression in cancers and their potential as therapeutic targets add importance to the task of understanding the molecular determinants of Aurora kinase stability. Here, we review what is known about ubiquitin-mediated targeting of these critical mitotic regulators and discuss the different factors that contribute to proteolytic control of Aurora kinase activity in the cell.
dc.description.sponsorshipWork in CL’s lab is currently supported by the Medical Research Council (MR/M01102X/1), while past research on Aurora kinases discussed in this review was supported by Cancer Research UK (C3/A10239).
dc.languageEnglishen
dc.language.isoenen
dc.publisherFrontiers
dc.rightsAttribution 2.0 UK: England & Wales*
dc.rights.urihttp://creativecommons.org/licenses/by/2.0/uk/*
dc.subjectAurora kinaseen
dc.subjectAURKAen
dc.subjectAURKBen
dc.subjectubiquitin-mediated proteolysisen
dc.subjectmitosisen
dc.subjectAPC/Cen
dc.titleUbiquitin-Mediated Degradation of Aurora Kinasesen
dc.typeArticle
dc.description.versionThis is the final version of the article. It first appeared from Frontiers via http://dx.doi.org/10.3389/fonc.2015.00307en
prism.number307en
prism.publicationDate2016en
prism.publicationNameFrontiers in Oncologyen
prism.volume5en
dc.rioxxterms.funderMRC
dc.rioxxterms.funderCRUK
dc.rioxxterms.projectidMR/M01102X/1
dc.rioxxterms.projectidC3/A10239
dcterms.dateAccepted2015-12-25en
rioxxterms.versionofrecord10.3389/fonc.2015.00307en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2016-01-18en
dc.contributor.orcidLindon, Cath [0000-0003-3554-2574]
dc.contributor.orcidGrant, Rhys [0000-0003-4027-0972]
dc.identifier.eissn2234-943X
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idMEDICAL RESEARCH COUNCIL (MR/M01102X/1)
pubs.funder-project-idMRC (982635)
pubs.funder-project-idCancer Research UK (A10239)


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 2.0 UK: England & Wales
Except where otherwise noted, this item's licence is described as Attribution 2.0 UK: England & Wales