Show simple item record

dc.contributor.authorTimms, Richarden
dc.contributor.authorMenzies, Sam Aen
dc.contributor.authorTchasovnikarova, Ivaen
dc.contributor.authorChristensen, Lea Cen
dc.contributor.authorWilliamson, Jamesen
dc.contributor.authorAntrobus, Robinen
dc.contributor.authorDougan, Gordonen
dc.contributor.authorEllgaard, Larsen
dc.contributor.authorLehner, Paulen
dc.date.accessioned2016-04-07T16:12:21Z
dc.date.available2016-04-07T16:12:21Z
dc.date.issued2016-06-10en
dc.identifier.citationTimms et al. Nature Communications (2016) 7: 11786en
dc.identifier.issn2041-1723
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/254870
dc.description.abstractThe application of forward genetic screens to cultured human cells represents a powerful method to study gene function. The repurposing of the bacterial CRISPR/Cas9 system provides an effective method to disrupt gene function in mammalian cells, and has been applied to genome-wide screens. Here we compare the efficacy of genome-wide CRISPR/Cas9-mediated forward genetic screens versus gene-trap mutagenesis screens in haploid human cells, which represent the existing 'gold standard' method. This head-to-head comparison aimed to identify genes required for the endoplasmic reticulum-associated degradation (ERAD) of MHC class I molecules. The two approaches show high concordance (>70%), successfully identifying the majority of the known components of the canonical glycoprotein ERAD pathway. Both screens also identify a role for the uncharacterized gene TXNDC11, which we show encodes an EDEM2/3-associated disulfide reductase. Genome-wide CRISPR/Cas9-mediated screens together with haploid genetic screens provide a powerful addition to the forward genetic toolbox.
dc.description.sponsorshipThis work was supported by the Wellcome Trust, through a Principal Research Fellowship to P.J.L. and PhD studentships to S.A.M. and I.A.T., the NIHR Cambridge BRC and the Lundbeck Foundation (L.C.C. and L.E.). The CIMR is in receipt of a Wellcome Trust strategic award.
dc.languageEnglishen
dc.language.isoenen
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleGenetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screensen
dc.typeArticle
dc.description.versionThis is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms11786.en
prism.number11786en
prism.publicationDate2016en
prism.publicationNameNature Communicationsen
prism.volume7en
dc.rioxxterms.funderWellcome Trust
dc.rioxxterms.funderNIHR
dcterms.dateAccepted2016-04-28en
rioxxterms.versionofrecord10.1038/ncomms11786en
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/en
rioxxterms.licenseref.startdate2016-06-10en
dc.contributor.orcidTimms, Richard [0000-0001-7275-597X]
dc.contributor.orcidTchasovnikarova, Iva [0000-0002-0477-0956]
dc.contributor.orcidWilliamson, James [0000-0002-2009-189X]
dc.contributor.orcidDougan, Gordon [0000-0003-0022-965X]
dc.contributor.orcidLehner, Paul [0000-0001-9383-1054]
dc.identifier.eissn2041-1723
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idWellcome Trust (101835/Z/13/Z)
cam.orpheus.successThu Jan 30 12:54:55 GMT 2020 - The item has an open VoR version.*
rioxxterms.freetoread.startdate2100-01-01


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International