Show simple item record

dc.contributor.authorCarmesin, Johannes
dc.date.accessioned2016-06-14T11:06:50Z
dc.date.available2016-06-14T11:06:50Z
dc.date.issued2016-06-08
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/256296
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.ejc.2016.04.007en
dc.description.abstractWe give a short proof that every finite graph (or matroid) has a tree-decomposition that displays all maximal tangles. This theorem for graphs is a central result of the graph minors project of Robertson and Seymour and the extension to matroids is due to Geelen, Gerards and Whittle.en
dc.description.sponsorshipEmmanuel College
dc.language.isoenen
dc.publisherElsevieren
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA short proof that every finite graph has a tree-decomposition displaying its tanglesen
dc.typeArticleen
prism.endingPage65en
prism.publicationNameEuropean Journal of Combinatoricsen
prism.startingPage61en
prism.volume58en
dc.identifier.doi10.17863/CAM.237
pubs.declined2017-10-11T13:54:43.58+0100
dcterms.dateAccepted2016-04-26
rioxxterms.versionofrecord10.1016/j.ejc.2016.04.007en
rioxxterms.versionAMen
rioxxterms.freetoread.startdate2017-06-08


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's licence is described as Attribution-NonCommercial-NoDerivatives 4.0 International