Show simple item record

dc.contributor.authorCarmesin, J
dc.date.accessioned2016-06-14T11:06:50Z
dc.date.available2016-06-14T11:06:50Z
dc.date.issued2016-11
dc.identifier.issn0195-6698
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/256296
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.ejc.2016.04.007
dc.description.abstractWe give a short proof that every finite graph (or matroid) has a tree-decomposition that displays all maximal tangles. This theorem for graphs is a central result of the graph minors project of Robertson and Seymour and the extension to matroids is due to Geelen, Gerards and Whittle.
dc.description.sponsorshipEmmanuel College
dc.language.isoen
dc.publisherElsevier BV
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleA short proof that every finite graph has a tree-decomposition displaying its tangles
dc.typeArticle
prism.endingPage65
prism.publicationNameEuropean Journal of Combinatorics
prism.startingPage61
prism.volume58
dc.identifier.doi10.17863/CAM.237
pubs.declined2017-10-11T13:54:43.58+0100
dcterms.dateAccepted2016-04-26
rioxxterms.versionofrecord10.1016/j.ejc.2016.04.007
rioxxterms.versionAM
dc.identifier.eissn1095-9971
rioxxterms.freetoread.startdate2017-06-08


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's licence is described as Attribution-NonCommercial-NoDerivatives 4.0 International