Repository logo
 

Gap junction inhibition by heptanol increases ventricular arrhythmogenicity by reducing conduction velocity without affecting repolarization properties or myocardial refractoriness in Langendorff-perfused mouse hearts.

Published version
Peer-reviewed

Change log

Authors

Tse, Gary 
Yeo, Jie Ming 
Tse, Vivian 
Kwan, Joseph 
Sun, Bing 

Abstract

In the current study, arrhythmogenic effects of the gap junction inhibitor heptanol (0.05 mM) were examined in Langendorff-perfused mouse hearts. Monophasic action potential recordings were obtained from the left ventricular epicardium during right ventricular pacing. Regular activity was observed both prior and subsequent to application of heptanol in all of the 12 hearts studied during 8 Hz pacing. By contrast, induced ventricular tachycardia (VT) was observed after heptanol treatment in 6/12 hearts using a S1S2 protocol (Fisher's exact test; P<0.05). The arrhythmogenic effects of heptanol were associated with increased activation latencies from 13.2±0.6 to 19.4±1.3 msec (analysis of variance; P<0.001) and reduced conduction velocities (CVs) from 0.23±0.01 to 0.16±0.01 msec (analysis of variance; P<0.001) in an absence of alterations in action potential durations (ADPs) at x=90% (38.0±1.0 vs. 38.3±1.8 msec), 70% (16.8±1.0 vs. 19.5±0.9 msec), 50% (9.2±0.8 vs. 10.1±0.6 msec) or 30% (4.8±0.5 vs. 6.3±0.6 msec) repolarization (APDx) or in effective refractory period (ERPs) (39.6±1.9 vs. 40.6±3.0 msec) (all P>0.05). Consequently, excitation wavelengths (λ; CV x ERP) were reduced from 9.1±0.6 to 6.5±0.6 mm (P<0.01), however critical intervals for re‑excitation (APD90 ‑ ERP) were unaltered (‑1.1±2.4 vs. ‑2.3±1.8 msec; P>0.05). Together, these observations demonstrate for the first time, to the best of our knowledge, that inhibition of gap junctions alone using a low heptanol concentration (0.05 mM) was able to reduce CV, which alone was sufficient to permit the induction of VT using premature stimulation by reducing λ, which therefore appears central in the determination of arrhythmic tendency.

Description

This is the final version of the article. It first appeared from Spandidos via https://doi.org/ 10.3892/mmr.2016.5738

Keywords

Action Potentials, Animals, Arrhythmias, Cardiac, Disease Models, Animal, Gap Junctions, Heart, Heart Conduction System, Heart Ventricles, Heptanol, Humans, Mice, Myocardium, Tachycardia, Ventricular

Journal Title

Mol Med Rep

Conference Name

Journal ISSN

1791-2997
1791-3004

Volume Title

14

Publisher

Spandidos Publications
Sponsorship
GT was awarded a BBSRC Doctoral Training Award at the University of Cambridge.