Repository logo
 

On Type IIn/Ia-CSM supernovae as exemplified by SN 2012ca

Published version
Peer-reviewed

Type

Article

Change log

Authors

Inserra, C 
Smartt, SJ 
Benetti, S 
Chen, TW 

Abstract

We present the complete set of ultra-violet, optical and near-infrared photometry and spectroscopy for SN 2012ca, covering the period from 6 d prior to maximum light, until 531 d after maximum. The spectroscopic time series for SN 2012ca is essentially unchanged over 1.5 yr, and appear to be dominated at all epochs by signatures of interaction with a dense circumstellar medium (CSM) rather than the underlying supernova (SN). SN 2012ca is a member of the set of type of the ambiguous IIn/Ia-CSM SNe, the nature of which have been debated extensively in the literature. The two leading scenarios are either a Type Ia SN exploding within a dense CSM from a non-degenerate, evolved companion, or a core-collapse SN from a massive star. While some members of the population have been unequivocally associated with Type Ia SNe, in other cases the association is less certain. While it is possible that SN 2012ca does arise from a thermonuclear SN, this would require a relatively high (between 20 and 70 per cent) efficiency in converting kinetic energy to optical luminosity, and a massive (∼2.3–2.6 M) circumstellar medium. On the basis of energetics, and the results of simple modelling, we suggest that SN 2012ca is more likely associated with a core-collapse SN. This would imply that the observed set of similar SNe to SN 2012ca is in fact originated by two populations, and while these are drawn from physically distinct channels, they can have observationally similar properties.

Description

Keywords

supernovae: general, supernovae: individual: SN2012ca, SN 1997cy, SN 1999E, SN 2002ic, SN 2005gj, PTF11kx

Journal Title

Monthly Notices of the Royal Astronomical Society

Conference Name

Journal ISSN

0035-8711
1365-2966

Volume Title

459

Publisher

Oxford University Press (OUP)
Sponsorship
This work is based on observations collected at the European Organization for Astronomical Research in the Southern hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO program 188.D-3003, 191.D-0935. It is also based on observations taken at the Panchromatic Robotic Optical Monitoring and Polarimetry Telescope (PROMPT) through the CNTAC proposal CN2012A-103; the Australian National University 2.3m Telescope and the Swift satellite. This work makes use of observations from the LCOGT network. Funded by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement n° [291222] (SJS). This work was partly supported by the European Union FP7 programme through ERC grant number 320360. SB and AP acknowledge the PRIN-INAF 2011 project ‘Transient Universe: from ESO Large to PESSTO’. Support for GP is provided by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.