Show simple item record

dc.contributor.authorGöpfrich, Kerstinen
dc.contributor.authorLi, Chen-Yuen
dc.contributor.authorRicci, Mariaen
dc.contributor.authorBhamidimarri, Satya Prathyushaen
dc.contributor.authorYoo, Jejoongen
dc.contributor.authorGyenes, Bertalanen
dc.contributor.authorOhmann, Alexanderen
dc.contributor.authorWinterhalter, Mathiasen
dc.contributor.authorAksimentiev, Alekseien
dc.contributor.authorKeyser, Ulrichen
dc.date.accessioned2016-09-29T13:47:18Z
dc.date.available2016-09-29T13:47:18Z
dc.date.issued2016-08-09en
dc.identifier.issn1936-0851
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/260447
dc.description.abstractDNA nanotechnology allows for the creation of three-dimensional structures at nanometer scale. Here, we use DNA to build the largest synthetic pore in a lipid membrane to date, approaching the dimensions of the nuclear pore complex and increasing the pore-area and the conductance 10-fold compared to previous man-made channels. In our design, 19 cholesterol tags anchor a megadalton funnel-shaped DNA origami porin in a lipid bilayer membrane. Confocal imaging and ionic current recordings reveal spontaneous insertion of the DNA porin into the lipid membrane, creating a transmembrane pore of tens of nanosiemens conductance. All-atom molecular dynamics simulations characterize the conductance mechanism at the atomic level and independently confirm the DNA porins’ large ionic conductance.
dc.description.sponsorshipK.G. acknowledges funding from the Winton Programme for the Physics of Sustainability, Gates Cambridge, and the Oppenheimer Ph.D. studentship; U.F.K. from an ERC Consolidator Grant (Designerpores 647144); and M.R. from the Early Postdoc Mobility fellowship of the Swiss National Science Foundation. A.A., J.Y., and C.Y.L. acknowledge support form the National Science Foundation under grants DMR-1507985, PHY-1430124, and EEC-1227034 and the supercomputer time provided through XSEDE Allocation grant MCA05S028 and the Blue Waters petascale supercomputer system (UIUC). M.W. and S.P.B. acknowledge support from Marie Skłodowska Curie Actions within the Initial Training Networks Translocation Network, project no. 607694.
dc.languageEnglishen
dc.language.isoenen
dc.publisherAmerican Chemical Society
dc.rightsAttribution 4.0 International*
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectDNA origamien
dc.subjectionic current recordingsen
dc.subjectlipid membraneen
dc.subjectmolecular dynamicsen
dc.subjectsynthetic porinen
dc.titleLarge-Conductance Transmembrane Porin Made from DNA Origamien
dc.typeArticle
dc.description.versionThis is the final version of the article. It first appeared from the American Chemical Society at http://dx.doi.org/10.1021/acsnano.6b03759.en
prism.endingPage8214
prism.publicationDate2016en
prism.publicationNameACS Nanoen
prism.startingPage8207
prism.volume10en
dc.identifier.doi10.17863/CAM.4681
dcterms.dateAccepted2016-08-09en
rioxxterms.versionofrecord10.1021/acsnano.6b03759en
rioxxterms.versionVoRen
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/en
rioxxterms.licenseref.startdate2016-08-09en
dc.contributor.orcidOhmann, Alexander [0000-0003-3537-1074]
dc.contributor.orcidKeyser, Ulrich [0000-0003-3188-5414]
dc.identifier.eissn1936-086X
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idECH2020 EUROPEAN RESEARCH COUNCIL (ERC) (647144)


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International