Repository logo
 

Characterization of a Fetal Liver Cell Population Endowed with Long-Term Multiorgan Endothelial Reconstitution Potential.

Published version
Peer-reviewed

Change log

Authors

Cañete, Ana 
Comaills, Valentine 
Prados, Isabel 
Castro, Ana María 
Hammad, Seddik 

Abstract

Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL-PLAP+ cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL-PLAP+ hematopoietic or endothelial cell subset responsible for the long-term reconstituting endothelial cell (LTR-EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan-treated newborn transplantation model, we show that LTR-EC activity is restricted to the SCL-PLAP+ VE-cadherin+ CD45- cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1+ endothelial-committed cells. SCL-PLAP+ Ve-cadherin+ CD45- cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR-EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor-derived vascular grafts colocalize with proliferating hepatocyte-like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR-EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells 2017;35:507-521.

Description

Keywords

Endothelial reconstitution, Fetal liver, Hematopoietic progenitors, Newborn transplantation, Progenitor cells, Animals, Antigens, CD, Blood Vessels, Cadherins, Cell Aggregation, Cell Line, Endothelial Cells, Extracellular Matrix Proteins, Fetus, Hematopoiesis, Leukocyte Common Antigens, Liver, Mice, Organ Specificity, T-Cell Acute Lymphocytic Leukemia Protein 1

Journal Title

Stem Cells

Conference Name

Journal ISSN

1066-5099
1549-4918

Volume Title

Publisher

Oxford University Press (OUP)
Sponsorship
Cancer Research Uk (None)
Leukaemia & Lymphoma Research (12029)
Wellcome Trust (097922/Z/11/Z)
Medical Research Council (MC_PC_12009)
Leukemia & Lymphoma Society (7001-12)
Biotechnology and Biological Sciences Research Council (BB/I00050X/1)
Spanish Ministry of Economy and Competitiveness (Grant IDs: BFU2010- 15801, CSD-2007-00008), Junta de Andalucıa Regional Government (Grant ID: CVI-295), European Regional Development Funds, Wellcome Trust, Medical Research Council