Show simple item record

dc.contributor.authorGalatius, Sen
dc.contributor.authorGrigoriev, Ien
dc.contributor.authorRandal-Williams, Oscaren
dc.date.accessioned2017-02-01T15:27:36Z
dc.date.available2017-02-01T15:27:36Z
dc.date.issued2017-04en
dc.identifier.issn0010-437X
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/262219
dc.description.abstractWe study tautological rings for high-dimensional manifolds, that is, for each smooth manifold $M$ the ring $R^*$($M$) of those characteristic classes of smooth fibre bundles with fibre $M$ which is generated by generalised Miller–Morita–Mumford classes. We completely describe these rings modulo nilpotent elements, when $M$ is a connected sum of copies of $S^n$ × $S^n$ for $n$ odd.
dc.description.sponsorshipS.G. was partially supported by NSF grants DMS-1105058 and DMS-1405001, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 682922), as well as the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92) and ERC-682992. O.R.W. was partially supported by EPSRC grant EP/M027783/1.
dc.languageengen
dc.language.isoenen
dc.publisherCambridge University Press
dc.subjecttautological ringen
dc.subjectcharacteristic classen
dc.titleTautological rings for high-dimensional manifoldsen
dc.typeArticle
prism.endingPage866
prism.issueIdentifier4en
prism.publicationDate2017en
prism.publicationNameCompositio Mathematicaen
prism.startingPage851
prism.volume153en
dc.identifier.doi10.17863/CAM.7474
dcterms.dateAccepted2016-11-07en
rioxxterms.versionofrecord10.1112/S0010437X16008332en
rioxxterms.versionAMen
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2017-04en
dc.contributor.orcidRandal-Williams, Oscar [0000-0002-7479-2878]
dc.identifier.eissn1570-5846
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/M027783/1)
cam.issuedOnline2017-03-13en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record