Show simple item record

dc.contributor.authorTonsomboon, Ken
dc.contributor.authorButcher, Annabelen
dc.contributor.authorOyen, Michelleen
dc.date.accessioned2017-02-02T11:43:49Z
dc.date.available2017-02-02T11:43:49Z
dc.date.issued2017-03-01en
dc.identifier.issn0928-4931
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/262232
dc.description.abstractMechanically robust hydrogels are required for many tissue engineering applications to serve as cell-supporting structures. Unlike natural tissues, the majority of existing tough hydrogels lack ordered microstructures organized to withstand specific loading conditions. In this work, electrospun gelatin nanofibres, mimicking the collagen network in native tissues, are used to strengthen and resist crack propagation in brittle alginate hydrogels. Aligned nanofibre reinforcement enhances the tensile strength of the hydrogels by up to two orders of magnitude. The nanofibres can be arranged as multilayer laminates with varying orientations, which increases the toughness by two orders of magnitude compared with the unreinforced hydrogel. This work demonstrates a two-part strategy of fibre reinforcement and composite lamination in manufacturing strong and tough hydrogels with flexible microstructures to suit different mechanical and biomedical requirements.
dc.description.sponsorshipK.T. acknowledges the Thai government and the University of Cambridge Nanoscience Doctoral Training Centre (EPSRC EP/G037221/1) for financial support, Anne Bahnweg for SEM assistance, Mark Rainer for electronics assistance, and Jenna Shapiro and Peerapat Thongnuek for helpful discussion. A.L.B. acknowledges the EPSRC Doctoral Training Account at Cambridge Engineering for financial support.
dc.languageengen
dc.language.isoenen
dc.publisherElsevier
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectfractureen
dc.subjecthydrogelen
dc.subjectnanocompositeen
dc.subjectnanofibresen
dc.subjecttoughnessen
dc.titleStrong and tough nanofibrous hydrogel composites based on biomimetic principlesen
dc.typeArticle
prism.endingPage227
prism.publicationDate2017en
prism.publicationNameMaterials Science and Engineering: Cen
prism.startingPage220
prism.volume72en
dc.identifier.doi10.17863/CAM.7485
dcterms.dateAccepted2016-11-07en
rioxxterms.versionofrecord10.1016/j.msec.2016.11.025en
rioxxterms.versionVoRen
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/en
rioxxterms.licenseref.startdate2017-03-01en
dc.contributor.orcidOyen, Michelle [0000-0002-3428-748X]
dc.identifier.eissn1873-0191
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/G037221/1)
cam.issuedOnline2016-11-14en
datacite.issupplementedby.doi10.17863/CAM.5907en
cam.orpheus.successThu Jan 30 12:54:04 GMT 2020 - The item has an open VoR version.*
rioxxterms.freetoread.startdate2100-01-01


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International