Show simple item record

dc.contributor.authorWallis, Roberten
dc.contributor.authorInnocenti, RDen
dc.contributor.authorJessop, Daviden
dc.contributor.authorMitrofanov, Oen
dc.contributor.authorBledt, CMen
dc.contributor.authorMelzer, JEen
dc.contributor.authorHarrington, JAen
dc.contributor.authorBeere, Harveyen
dc.contributor.authorRitchie, Daviden
dc.date.accessioned2017-02-02T12:31:36Z
dc.date.available2017-02-02T12:31:36Z
dc.date.issued2016-12-26en
dc.identifier.issn1094-4087
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/262234
dc.description.abstractThe field of terahertz (THz) waveguides continues to grow rapidly, with many being tailored to suit the specific demands of a particular final application. Here, we explore waveguides capable of enabling efficient and accurate power delivery within cryogenic environments (< 4 K). The performance of extruded hollow cylindrical metal waveguides made of un-annealed and annealed copper, as well as stainless steel, have been investigated for bore diameters between 1.75 - 4.6 mm, and at frequencies of 2.0, 2.85 and 3.4 THz, provided by a suitable selection of THz quantum cascade lasers. The annealed copper resulted in the lowest transmission losses, < 3 dB/m for a 4.6 mm diameter waveguide, along with 90° bending losses as low as ~2 dB for a bend radius of 15.9 mm. The observed trends in losses were subsequently analyzed and related to measured inner surface roughness parameters. These results provide a foundation for the development of a wide array of demanding low-temperature THz applications, and enabling the study of fundamental physics.
dc.description.sponsorshipEngineering and Physical Sciences Research Council (Grant No. EP/J017671/1, Coherent Terahertz Systems).
dc.languageengen
dc.language.isoenen
dc.publisherOptical Society of America
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectsemiconductor lasersen
dc.subjectquantum cascadeen
dc.subject(230.7370) wave guidesen
dc.subject(140.3300) laser beam shapingen
dc.titleInvestigation of hollow cylindrical metal terahertz waveguides suitable for cryogenic environmentsen
dc.typeArticle
prism.endingPage30014
prism.issueIdentifier26en
prism.publicationDate2016en
prism.publicationNameOptics Expressen
prism.startingPage30002
prism.volume24en
dc.identifier.doi10.17863/CAM.7487
dcterms.dateAccepted2016-11-07en
rioxxterms.versionofrecord10.1364/OE.24.030002en
rioxxterms.versionVoRen
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/en
rioxxterms.licenseref.startdate2016-12-26en
dc.contributor.orcidBeere, Harvey [0000-0001-5630-2321]
dc.contributor.orcidRitchie, David [0000-0002-9844-8350]
dc.identifier.eissn1094-4087
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idUNIVERSITY COLLEGE LONDON (FB EPSRC) (EP/J017671/1)
datacite.issupplementedby.doi10.17863/CAM.6166en
cam.orpheus.successThu Jan 30 12:54:04 GMT 2020 - The item has an open VoR version.*
rioxxterms.freetoread.startdate2100-01-01


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International