fCCAC: functional canonical correlation analysis to evaluate covariance between nucleic acid sequencing datasets
Authors
Publication Date
2016-12-19Journal Title
Bioinformatics
ISSN
1367-4803
Publisher
Oxford University Press
Language
English
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Madrigal, P. (2016). fCCAC: functional canonical correlation analysis to evaluate covariance between nucleic acid sequencing datasets. Bioinformatics https://doi.org/10.1093/bioinformatics/btw724
Abstract
Computational evaluation of variability across DNA or RNA sequencing datasets is a crucial step in genomic science, as it allows both to evaluate reproducibility of biological or technical replicates, and to compare different datasets to identify their potential correlations. Here we present fCCAC, an application of functional canonical correlation analysis to assess covariance of nucleic acid sequencing datasets such as chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). We show how this method differs from other measures of correlation, and exemplify how it can reveal shared covariance between histone modifications and DNA binding proteins, such as the relationship between the H3K4me3 chromatin mark and its epigenetic writers and readers.
Sponsorship
This work was supported by the ERC starting grant Relieve-IMDs and core support grant from the Wellcome Trust and MRC to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute.
Funder references
MRC (MC_PC_12009)
Embargo Lift Date
2100-01-01
Identifiers
External DOI: https://doi.org/10.1093/bioinformatics/btw724
This record's URL: https://www.repository.cam.ac.uk/handle/1810/262309
Rights
Attribution 4.0 International, Attribution 4.0 International, Attribution 4.0 International, Attribution 4.0 International