Repository logo
 

Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe

Published version
Peer-reviewed

Change log

Authors

Jenkins, J 
Deuss, A 

Abstract

Until recently, most of the lower mantle was generally considered to be well-mixed with strong heterogeneity restricted to the lowermost several hundred kilometres above the core–mantle boundary, known as the D″ layer. However several recent studies have started to hint at a potential change in Earth's structure at mid-mantle depths beneath the transition zone.

Here we present a continental-wide search of Europe and the North Atlantic for mid-mantle P-to-s wave converted phases. Our data set consists of close to 50,000 high quality receiver functions. These are combined in slowness and depth stacks to identify seismic discontinuities in the range of 800–1400 km depth to determine at which depths and in which tectonic settings these features exist. Receiver functions are computed in different frequency bands to resolve the sharpness of the observed discontinuities. We find most seismic velocity jumps are observed between 975–1050 km depth, localised beneath western Europe and Iceland. The shear wave velocity jumps are roughly 1–2.5% velocity increase with depth occurring over less than 8 km in width. The most robust observations are coincident with areas of active upwelling (under Iceland) and an elongate lateral low velocity anomaly imaged in recent tomographic models which has been interpreted as diverted plume material at depth.

The lack of any suggested phase change in a normal pyrolitic mantle composition at around 1000 km depth indicates the presence of regional chemical heterogeneity within the mid-mantle, potentially caused by diverted plume material. We hypothesise that our observations represent either a phase change within chemically distinct plume material itself, or are caused by small scale chemical heterogeneities entrained within the upwelling plume, either in the form of recycled basaltic material or deep sourced chemically distinct material from LLSVPs.

Our observations, which cannot be directly linked to an area of either active or ancient subduction, along with observations in other hotspot regions, suggest that such mid-mantle seismic features are not unique to subduction zones despite the large number of observations that have previously been made in such settings.

Description

Keywords

Europe, seismology, mid-mantle, receiver functions, Iceland, mantle discontinuities

Journal Title

Earth and Planetary Science Letters

Conference Name

Journal ISSN

0012-821X
1385-013X

Volume Title

459

Publisher

Elsevier
Sponsorship
European Commission (308377)
European Research Council (204995)
The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, as well as the ORFEUS data centre were used for access to waveforms, related metadata, and/or derived products used in this study. IRIS Data Services are funded through the Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE) Proposal of the National Science Foundation under Cooperative Agreement EAR-1261681. For full citation list of all FDSN networks please see the Supplementary Material. Seismometers for the Cambridge seismic network in Iceland were borrowed from the Natural Environment Research Council (NERC) SEIS-UK (loans 857, 968 and 1022), and funded by research grants from the NERC and the European Community's Seventh Framework Programme Grant No. 308377 (Project FUTUREVOLC), to Robert S. White. J.J. was funded by a graduate studentship from NERC (LBAG/148 Task 5). S.C. is funded by the Drapers' Company Research Fellowship through Pembroke College, Cambridge. Thanks are also extended to the Icelandic Meteorological office for sharing data that were used in this study. A.D. and J.J. were funded by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007–2013/ERC grant agreement 204995) and by a Philip Leverhulme Prize. Data was downloaded from IRIS DMC and figures made using GMT (Wessel and Smith, 2001).