Show simple item record

dc.contributor.authorAmjad, OAen
dc.contributor.authorMognetti, BMen
dc.contributor.authorCicuta, Pietroen
dc.contributor.authorDi Michele, Lorenzoen
dc.date.accessioned2017-03-28T15:45:12Z
dc.date.available2017-03-28T15:45:12Z
dc.identifier.issn0743-7463
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/263299
dc.description.abstractLigand/receptor multivalent interactions have been exploited to drive self-assembly of nanoparticles, hard colloids, and, more recently, compliant units including emulsion droplets and lipid vesicles. In deformable liposomes, formation of links between two membranes produces morphological changes depending on the amount of ligands in the environment. Here, we study a proof-of-concept biosensing system in which single lipid vesicles adhere to a flat supported lipid bilayer, both decorated with membrane-anchored biotinylated receptors. Adhesion is driven by multivalent streptavidin (SA) ligands forming bridges between the vesicles and the supported bilayer. Upon changing the concentration of ligands, we characterize the morphological and mechanical changes of the vesicles, including the formation of a stable adhesion patch, membrane tension, and the kinetics of bridge rupture/formation. We observe vesicle binding only within a specific range of ligand concentrations: adhesion does not occur if the amount of SA is either too low or too high. A theoretical model is presented, elucidating the mechanism underlying this observation, particularly, the role of SA multivalency in determining the onset of adhesion. We elaborate on how the behavior of membranes studied here could be exploited in next-generation (bio)molecular analytical devices.
dc.description.sponsorshipO.A.A. acknowledges support from the EPSRC Centre for Doctoral Training in Sensor Technology and Applications, Grant number EP/L015889/1. O.A.A., P.C., and L.D.M. acknowledge support from the EPSRC Programme Grant CAPITALS number EP/J017566/1. L.D.M. acknowledges support from the Oppenheimer Fund, Emmanuel College Cambridge, and The Leverhulme Trust through an Early Career Research Fellowship underwritten by the Isaac Newton Trust. B.M.M. acknowledges support from the Univeristé Libre de Bruxelles (ULB).
dc.languageengen
dc.language.isoenen
dc.publisherAmerican Chemical Society
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleMembrane Adhesion through Bridging by Multimeric Ligandsen
dc.typeArticle
prism.endingPage1146
prism.issueIdentifier5en
prism.publicationNameLangmuiren
prism.startingPage1139
prism.volume33en
dc.identifier.doi10.17863/CAM.8634
dcterms.dateAccepted2017-01-10en
rioxxterms.versionofrecord10.1021/acs.langmuir.6b03692en
rioxxterms.versionVoRen
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/en
rioxxterms.licenseref.startdate2017-01-10en
dc.contributor.orcidCicuta, Pietro [0000-0002-9193-8496]
dc.contributor.orcidDi Michele, Lorenzo [0000-0002-1458-9747]
dc.identifier.eissn1520-5827
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/L015889/1)
cam.issuedOnline2017-01-10en
datacite.issupplementedby.doi10.17863/CAM.6919en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International