Show simple item record

dc.contributor.authorManton, Nicholasen
dc.date.accessioned2017-04-28T16:18:50Z
dc.date.available2017-04-28T16:18:50Z
dc.date.issued2017-02-24en
dc.identifier.issn1751-8113
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/263897
dc.description.abstractThe Taubes equation for Abelian Higgs vortices is generalised to five distinct U(1) vortex equations. These include the Popov and Jackiw–Pi vortex equations, and two further equations. The Baptista metric, a conformal rescaling of the background metric by the squared Higgs field, gives insight into these vortices, and shows that vortices can be interpreted as conical singularities superposed on the background geometry. When the background has a constant curvature adapted to the vortex type, then the vortex equation is integrable by a reduction to Liouville's equation, and the Baptista metric has a constant curvature too, apart from its conical singularities. The conical geometry is fairly easy to visualise in some cases.
dc.language.isoenen
dc.publisherIOP Publishing
dc.titleFive vortex equationsen
dc.typeArticle
prism.number125403en
prism.publicationDate2017en
prism.publicationNameJournal of Physics A: Mathematical and Theoreticalen
prism.volume50en
dc.identifier.doi10.17863/CAM.9275
dcterms.dateAccepted2017-02-08en
rioxxterms.versionofrecord10.1088/1751-8121/aa5f19en
rioxxterms.versionAMen
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2017-02-24en
dc.contributor.orcidManton, Nicholas [0000-0002-2938-156X]
dc.identifier.eissn1751-8121
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idSTFC (ST/L000385/1)
pubs.funder-project-idSTFC (ST/P000681/1)
rioxxterms.freetoread.startdate2018-02-08


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record