Repository logo
 

Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson's disease: a comparison of 33 human and animal studies.

Published version
Peer-reviewed

Change log

Authors

Oerton, Erin 

Abstract

BACKGROUND: As the popularity of transcriptomic analysis has grown, the reported lack of concordance between different studies of the same condition has become a growing concern, raising questions as to the representativeness of different study types, such as non-human disease models or studies of surrogate tissues, to gene expression in the human condition. METHODS: In a comparison of 33 microarray studies of Parkinson's disease, correlation and clustering analyses were used to determine the factors influencing concordance between studies, including agreement between different tissue types, different microarray platforms, and between neurotoxic and genetic disease models and human Parkinson's disease. RESULTS: Concordance over all studies is low, with correlation of only 0.05 between differential gene expression signatures on average, but increases within human patients and studies of the same tissue type, rising to 0.38 for studies of human substantia nigra. Agreement of animal models, however, is dependent on model type. Studies of brain tissue from Parkinson's disease patients (specifically the substantia nigra) form a distinct group, showing patterns of differential gene expression noticeably different from that in non-brain tissues and animal models of Parkinson's disease; while comparison with other brain diseases (Alzheimer's disease and brain cancer) suggests that the mixed study types display a general signal of neurodegenerative disease. A meta-analysis of these 33 microarray studies demonstrates the greater ability of studies in humans and highly-affected tissues to identify genes previously known to be associated with Parkinson's disease. CONCLUSIONS: The observed clustering and concordance results suggest the existence of a 'characteristic' signal of Parkinson's disease found in significantly affected human tissues in humans. These results help to account for the consistency (or lack thereof) so far observed in microarray studies of Parkinson's disease, and act as a guide to the selection of transcriptomic studies most representative of the underlying gene expression changes in the human disease.

Description

Keywords

Concordance, Gene expression, Meta-analysis, Microarray, Parkinson’s disease, Animals, Gene Expression, Gene Expression Profiling, Humans, Mice, Microarray Analysis, Parkinson Disease, Rats

Journal Title

BMC Neurol

Conference Name

Journal ISSN

1471-2377
1471-2377

Volume Title

Publisher

Springer Science and Business Media LLC
Sponsorship
BBSRC (1501561)