Show simple item record

dc.contributor.authorOlariu, Ven
dc.contributor.authorNilsson, Jen
dc.contributor.authorJonsson, Henriken
dc.contributor.authorPeterson, Cen
dc.date.accessioned2017-06-28T14:30:11Z
dc.date.available2017-06-28T14:30:11Z
dc.date.issued2017-04-06en
dc.identifier.issn1932-6203
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/265058
dc.description.abstractAlthough the plant and animal kingdoms were separated more than 1,6 billion years ago, multicellular development is for both guided by similar transcriptional, epigenetic and posttranscriptional machinery. One may ask to what extent there are similarities and differences in the gene regulation circuits and their dynamics when it comes to important processes like stem cell regulation. The key players in mouse embryonic stem cells governing pluripotency versus differentiation are Oct4, Sox2 and Nanog. Correspondingly, the WUSCHEL and CLAVATA3 genes represent a core in the Shoot Apical Meristem regulation for plants. In addition, both systems have designated genes that turn on differentiation. There is very little molecular homology between mammals and plants for these core regulators. Here, we focus on functional homologies by performing a comparison between the circuitry connecting these players in plants and animals and find striking similarities, suggesting that comparable regulatory logics have been evolved for stem cell regulation in both kingdoms. From in silico simulations we find similar differentiation dynamics. Further when in the differentiated state, the cells are capable of regaining the stem cell state. We find that the propensity for this is higher for plants as compared to mammalians. Our investigation suggests that, despite similarity in core regulatory networks, the dynamics of these can contribute to plant cells being more plastic than mammalian cells, i.e. capable to reorganize from single differentiated cells to whole plants-reprogramming. The presence of an incoherent feed-forward loop in the mammalian core circuitry could be the origin of the different reprogramming behaviour.
dc.description.sponsorshipThis work was supported Swedish Research Council, grant VR 621-2013-4547 to CP; the Swedish Foundation for Strategic Research, grant A3 04 159p to CP; the Gatsby Charitable Foundation (GB), grant GAT3395-PR4 to HJ and the Swedish Research Council, grant VR 621- 2013-4632 to HJ.
dc.languageengen
dc.language.isoenen
dc.publisherPublic Library of Science
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleDifferent reprogramming propensities in plants and mammals: Are small variations in the core network wirings responsible?en
dc.typeArticle
prism.issueIdentifier4en
prism.numbere0175251en
prism.publicationDate2017en
prism.publicationNamePLoS Oneen
prism.volume12en
dc.identifier.doi10.17863/CAM.10975
dcterms.dateAccepted2017-03-22en
rioxxterms.versionofrecord10.1371/journal.pone.0175251en
rioxxterms.versionVoRen
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/en
rioxxterms.licenseref.startdate2017-04-06en
dc.contributor.orcidJonsson, Henrik [0000-0003-2340-588X]
dc.identifier.eissn1932-6203
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International