Show simple item record

dc.contributor.authorSchwarz, Laurettaen
dc.contributor.authorAlavi, Alien
dc.contributor.authorBooth, GHen
dc.date.accessioned2017-07-17T11:22:04Z
dc.date.available2017-07-17T11:22:04Z
dc.date.issued2017-04-25en
dc.identifier.issn0031-9007
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/265394
dc.description.abstractWe reformulate the projected imaginary-time evolution of the full configuration interaction quantum Monte Carlo method in terms of a Lagrangian minimization. This naturally leads to the admission of polynomial complex wave function parametrizations, circumventing the exponential scaling of the approach. While previously these functions have traditionally inhabited the domain of variational Monte Carlo approaches, we consider recent developments for the identification of deep-learning neural networks to optimize this Lagrangian, which can be written as a modification of the propagator for the wave function dynamics. We demonstrate this approach with a form of tensor network state, and use it to find solutions to the strongly correlated Hubbard model, as well as its application to a fully periodic ab initio graphene sheet. The number of variables which can be simultaneously optimized greatly exceeds alternative formulations of variational Monte Carlo methods, allowing for systematic improvability of the wave function flexibility towards exactness for a number of different forms, while blurring the line between traditional variational and projector quantum Monte Carlo approaches.
dc.description.sponsorshipG. H. B. gratefully acknowledges funding from the Royal Society via a University Research Fellowship, as well as support from the Air Force Office of Scientific Research via Grant No. FA9550-16-1-0256. A. A. acknowledges support from the EPSRC, Grant No. EP/J003867/1. L. R. S. is supported by an EPSRC studentship.
dc.languageengen
dc.language.isoenen
dc.publisherAmerican Physical Society
dc.titleProjector Quantum Monte Carlo Method for Nonlinear Wave Functionsen
dc.typeArticle
prism.issueIdentifier17en
prism.number176403en
prism.publicationDate2017en
prism.publicationNamePhysical Review Lettersen
prism.volume118en
dc.identifier.doi10.17863/CAM.11565
dcterms.dateAccepted2017-04-05en
rioxxterms.versionofrecord10.1103/PhysRevLett.118.176403en
rioxxterms.versionAMen
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2017-04-25en
dc.contributor.orcidAlavi, Ali [0000-0002-0654-9489]
dc.identifier.eissn1079-7114
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/J003867/1)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record