Repository logo
 

Applicability of hybrid methods in engine control system design


No Thumbnail Available

Type

Thesis

Change log

Authors

Swift, Stuart John 

Abstract

The new control techniques of off-line model predictive control and level set methods have been applied to the challenges of engine management for diesel exhaust aftertreatment. Theoretical work has been supported by experiments carried out in a diesel engine test cell. A control relevant air-path model was developed using experimental work carried out on a diesel engine and dynamometer, with the aim of improving the engine control during the transients required by aftertreatment devices. This was considered as a two input and two output system, using an intake throttle and a valve associated with the exhaust gas recirculation system to control the in-cylinder quantities of fresh air and exhaust gas. Model predictive control techniques were used to design a hybrid controller, which was compared to a traditional proportional and integral controller and a 1-{00 controller in simulation. Level set methods were used to analyse supervisory hybrid control of a lean NOx trap model. In this system periodic mode changes are required to purge the NOx trapped on the filter and convert it to less harmful products. A novel diesel particulate filter model suitable for control was developed to represent the thermal wave behaviour observed in worst-case regenerations, where the soot in the filter burns to create local high temperature regions. A DPF was instrumented and fitted to the diesel engine and tested in the development of this model, particularly focusing upon these worst-case conditions. This new theoretical model was analysed using level set methods in a comparison with a simple control oriented DPF model. A supervisory hybrid control strategy to determine when to take emergency action to avoid thermal damage to the filter was designed using the simple DPF model. This strategy used safe conditions verified from the experimental work undertaken .

Description

This thesis is not available on this repository until the author agrees to make it public. If you are the author of this thesis and would like to make your work openly available, please contact us: thesis@repository.cam.ac.uk.


Cambridge University Library can make a copy of this work available only for the purposes of private study and non-commercial research. Copies should not be shared or saved in any shared facilities. Copyright over the content of these works is with their authors. Theses from the Library collection are considered unpublished works and according to UK legislation quoting from them is not allowed without permission from their author.

If you can commit to these terms, please complete the request form which you can find through this link: https://imagingservices.lib.cam.ac.uk/


Please note that print copies of theses may be available for consultation in the Cambridge University Library's Manuscript reading room. Admission details are at http://www.lib.cam.ac.uk/collections/departments/manuscripts-university-archives

Date

Advisors

Keywords

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge