Show simple item record

dc.contributor.authorDu, Sijunen
dc.contributor.authorJia, Yen
dc.contributor.authorChen, Shao-Tuanen
dc.contributor.authorZhao, Chunen
dc.contributor.authorSun, Ben
dc.contributor.authorArroyo, Een
dc.contributor.authorSeshia, Ashwinen
dc.date.accessioned2017-07-20T10:48:12Z
dc.date.available2017-07-20T10:48:12Z
dc.date.issued2017-08-15en
dc.identifier.issn0924-4247
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/265677
dc.description.abstractA resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electrical charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric materials and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examine the trade-off involved with respect to maximize output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area in order to maximize output power. The calculations show that, in order to maximize the output power of a PVEH, the electrode should cover the piezoelectric layer from the peak strain area to a position, where the strain is a half of the average strain in all the previously covered area. With the proposed electrode design, the output power can be improved by 145% and 126% for a cantilever and a clamped-clamped beam, respectively. MEMS piezoelectric harvesters are fabricated to experimentally validate the theory.
dc.description.sponsorshipEPSRC (Grant EP/L010917/1)
dc.language.isoenen
dc.publisherElsevier
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectenergy harvestingen
dc.subjectpiezoelectric transducersen
dc.subjectMicroelectromechanical Systems (MEMS)en
dc.titleA new electrode design method in piezoelectric vibration energy harvesters to maximize output poweren
dc.typeArticle
prism.endingPage701
prism.publicationDate2017en
prism.publicationNameSensors and Actuators A: Physicalen
prism.startingPage693
prism.volume263en
dc.identifier.doi10.17863/CAM.11824
dcterms.dateAccepted2017-06-23en
rioxxterms.versionofrecord10.1016/j.sna.2017.06.026en
rioxxterms.versionVoRen
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/en
rioxxterms.licenseref.startdate2017-08-15en
dc.contributor.orcidDu, Sijun [0000-0001-6238-4423]
dc.contributor.orcidZhao, Chun [0000-0001-8400-433X]
dc.contributor.orcidSeshia, Ashwin [0000-0001-9305-6879]
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/L010917/1)
pubs.funder-project-idEPSRC (EP/N021614/1)
pubs.funder-project-idTechnology Strategy Board (920035)
pubs.funder-project-idEPSRC (EP/K000314/1)
cam.issuedOnline2017-07-19en
cam.orpheus.successThu Jan 30 12:53:30 GMT 2020 - The item has an open VoR version.*
rioxxterms.freetoread.startdate2100-01-01


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International