Show simple item record

dc.contributor.authorWilton, Henryen
dc.contributor.authorGroves, Den
dc.date.accessioned2017-07-25T13:28:30Z
dc.date.available2017-07-25T13:28:30Z
dc.identifier.issn0021-2172
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/265722
dc.description.abstractfundamental case in which Γ is free, may not be finitely presentable or geometrically tractable. We define model Γ-limit groups, which always have good geometric properties (in particular, they are always relatively hyperbolic). Given a strict resolution of an arbitrary Γ-limit group L, we canonically construct a strict resolution of a model Γ-limit group, which encodes all homomorphisms L → Γ that factor through the given resolution. We propose this as the correct framework in which to study Γ-limit groups algorithmically. We enumerate all Γ-limit groups in this framework.
dc.description.sponsorshipThe work of the first author was supported by the National Science Foundation and by a grant from the Simons Foundation (#342049 to Daniel Groves). The second author was supported by the EPSRC.
dc.language.isoenen
dc.publisherSpringer
dc.titleThe structure of limit groups over hyperbolic groupsen
dc.typeArticle
prism.endingPage176
prism.publicationNameIsrael Journal of Mathematicsen
prism.startingPage119
prism.volume226en
dc.identifier.doi10.17863/CAM.11376
dcterms.dateAccepted2017-05-08en
rioxxterms.versionofrecord10.1007/s11856-018-1692-2en
rioxxterms.versionAMen
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2017-05-08en
dc.contributor.orcidWilton, Henry [0000-0001-6369-9478]
dc.identifier.eissn1565-8511
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/L026481/1)
cam.issuedOnline2018-05-11en
dc.identifier.urlhttps://link.springer.com/article/10.1007%2Fs11856-018-1692-2#article-infoen
cam.orpheus.successWed Apr 01 08:15:39 BST 2020 - Embargo updated*
cam.orpheus.counter2*
rioxxterms.freetoread.startdate2019-05-11


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record