Repository logo
 

The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Shilo, M 
Sharon, A 
Baranes, K 
Motiei, M 
Lellouche, J-PM 

Abstract

BACKGROUND: During the last decade nanoparticles have gained attention as promising drug delivery agents that can transport through the blood brain barrier. Recently, several studies have demonstrated that specifically targeted nanoparticles which carry a large payload of therapeutic agents can effectively enhance therapeutic agent delivery to the brain. However, it is difficult to draw definite design principles across these studies, owing to the differences in material, size, shape and targeting agents of the nanoparticles. Therefore, the main objective of this study is to develop general design principles that link the size of the nanoparticle with the probability to cross the blood brain barrier. Specifically, we investigate the effect of the nanoparticle size on the probability of barbiturate coated GNPs to cross the blood brain barrier by using bEnd.3 brain endothelial cells as an in vitro blood brain barrier model. RESULTS: The results show that GNPs of size 70 nm are optimal for the maximum amount of gold within the brain cells, and that 20 nm GNPs are the optimal size for maximum free surface area. CONCLUSIONS: These findings can help understand the effect of particle size on the ability to cross the blood brain barrier through the endothelial cell model, and design nanoparticles for brain imaging/therapy contrast agents.

Description

Keywords

Animals, Barbiturates, Blood-Brain Barrier, Brain, Cells, Cultured, Endothelial Cells, Metal Nanoparticles, Mice, Microscopy, Electron, Transmission, Particle Size, Spectrophotometry, Ultraviolet

Journal Title

Journal of Nanobiotechnology

Conference Name

Journal ISSN

1477-3155
1477-3155

Volume Title

13

Publisher

BioMed Central
Sponsorship
Israel Cancer Research Fund (ICRF), Teva Pharmaceutical Industries Ltd.