Show simple item record

dc.contributor.authorCliffe, Matten
dc.contributor.authorBartók, APen
dc.contributor.authorKerber, Rachelen
dc.contributor.authorGrey, Clareen
dc.contributor.authorCsanyi, Gaboren
dc.contributor.authorGoodwin, ALen
dc.date.accessioned2017-09-01T12:04:51Z
dc.date.available2017-09-01T12:04:51Z
dc.date.issued2017-06-30en
dc.identifier.issn2469-9950
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/266990
dc.description.abstractUnderstanding the structural origins of the properties of amorphous materials remains one of the most important challenges in structural science. In this study we demonstrate that local ‘structural simplicity’, embodied by the degree to which atomic environments within a material are similar to each other, is powerful concept for rationalising the structure of canonical amorphous material amorphous silicon (a-Si). We show, by restraining a reverse Monte Carlo refinement against pair distribution function (PDF) data to be simpler, that the simplest model consistent with the PDF is a continuous random network (CRN). A further effect of producing a simple model of a-Si is the generation of a (pseudo)gap in the electronic density of states, suggesting that structural ho- mogeneity drives electronic homogeneity. That this method produces models of a-Si that approach the state-of-the-art without the need for chemically specific restraints (beyond the assumption of homogeneity) suggests that simplicity-based refinement approaches may allow experiment-driven structural modelling techniques to be developed for the wide variety of amorphous semiconductors with strong local order.
dc.description.sponsorshipSidney Sussex College, Cambridge to M.J.C.; EPSRC to C.P.G. and R.P.K. under Grant No. EP/K030132/1 EPSRC (EP/G004528/2) and ERC (Grant Ref: 279705) to M.J.C and A.L.G.. A.P.B. was supported by a Leverhulme Early Career Fellowship with joint funding from the Isaac Newton Trust. Via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by the EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://archer.ac.uk).
dc.language.isoenen
dc.publisherAPS
dc.titleStructural Simplicity as a Restraint on the Structure of Amorphous Siliconen
dc.typeArticle
prism.issueIdentifier22en
prism.number224108en
prism.publicationDate2017en
prism.publicationNamePhysical Review B - Condensed Matter and Materials Physicsen
prism.volume95en
dc.identifier.doi10.17863/CAM.10417
dcterms.dateAccepted2017-06-07en
rioxxterms.versionofrecord10.1103/PhysRevB.95.224108en
rioxxterms.versionAMen
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2017-06-30en
dc.contributor.orcidCliffe, Matt [0000-0002-0408-7647]
dc.contributor.orcidGrey, Clare [0000-0001-5572-192X]
dc.contributor.orcidCsanyi, Gabor [0000-0002-8180-2034]
dc.identifier.eissn2469-9969
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/K030132/1)
pubs.funder-project-idEPSRC (EP/K014560/1)
pubs.funder-project-idEPSRC (EP/P022596/1)
cam.issuedOnline2017-06-30en


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record