Grammatical error correction using hybrid systems and type filtering
dc.contributor.author | Felice, M | en |
dc.contributor.author | Yuan, Z | en |
dc.contributor.author | Andersen, ØE | en |
dc.contributor.author | Giannakoudaki, Helen Yannakoudakis | en |
dc.contributor.author | Kochmar, Ekaterina | en |
dc.contributor.editor | Ng, HT | en |
dc.contributor.editor | Wu, SM | en |
dc.contributor.editor | Briscoe, T | en |
dc.contributor.editor | Hadiwinoto, C | en |
dc.contributor.editor | Susanto, RH | en |
dc.contributor.editor | Bryant, C | en |
dc.date.accessioned | 2017-09-12T09:02:50Z | |
dc.date.available | 2017-09-12T09:02:50Z | |
dc.date.issued | 2014 | en |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/267158 | |
dc.description.abstract | This paper describes our submission to the CoNLL 2014 shared task on grammatical error correction using a hybrid approach, which includes both a rule-based and an SMT system augmented by a large webbased language model. Furthermore, we demonstrate that correction type estimation can be used to remove unnecessary corrections, improving precision without harming recall. Our best hybrid system achieves state of-the-art results, ranking first on the original test set and second on the test set with alternative annotations. | |
dc.description.sponsorship | [We would like to thank] Cambridge English Language Assessment, a division of Cambridge Assessment, for supporting this research. | |
dc.language.iso | en | en |
dc.publisher | Association for Computational Linguistics | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en |
dc.title | Grammatical error correction using hybrid systems and type filtering | en |
dc.type | Conference Object | |
prism.endingPage | 24 | |
prism.publicationDate | 2014 | en |
prism.publicationName | Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task | en |
prism.startingPage | 15 | |
dc.identifier.doi | 10.17863/CAM.13173 | |
rioxxterms.version | VoR | en |
rioxxterms.licenseref.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en |
rioxxterms.licenseref.startdate | 2014 | en |
dc.contributor.orcid | Giannakoudaki, Helen Yannakoudakis [0000-0002-4429-7729] | |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en |
dc.identifier.url | http://www.aclweb.org/anthology/K/K14/#2014_1 | en |
pubs.conference-name | Seventeenth Conference on Computational Natural Language Learning (CoNLL 2014): Shared Task | en |
pubs.conference-start-date | 2014-07-26 | en |