Repository logo
 

SONS: The JCMT legacy survey of debris discs in the submillimetre

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Holland, WS 
Matthews, BC 
Kennedy, GM 
Greaves, JS 
Wyatt, MC 

Abstract

Debris discs are evidence of the ongoing destructive collisions between planetesimals, and their presence around stars also suggests that planets exist in these systems. In this paper, we present submillimetre images of the thermal emission from debris discs that formed the SCUBA-2 Observations of Nearby Stars (SONS) survey, one of seven legacy surveys undertaken on the James Clerk Maxwell Telescope between 2012 and 2015. The overall results of the survey are presented in the form of 850 μm (and 450 μm, where possible) images and fluxes for the observed fields. Excess thermal emission, over that expected from the stellar photosphere, is detected around 49 stars out of the 100 observed fields. The discs are characterized in terms of their flux density, size (radial distribution of the dust) and derived dust properties from their spectral energy distributions. The results show discs over a range of sizes, typically 1–10 times the diameter of the Edgeworth–Kuiper Belt in our Solar system. The mass of a disc, for particles up to a few millimetres in size, is uniquely obtainable with submillimetre observations and this quantity is presented as a function of the host stars’ age, showing a tentative decline in mass with age. Having doubled the number of imaged discs at submillimetre wavelengths from ground-based, single-dish telescope observations, one of the key legacy products from the SONS survey is to provide a comprehensive target list to observe at high angular resolution using submillimetre/millimetre interferometers (e.g. Atacama Large Millimeter Array, Smithsonian Millimeter Array).

Description

Keywords

circumstellar matter, submillimetre: stars

Journal Title

Monthly Notices of the Royal Astronomical Society

Conference Name

Journal ISSN

0035-8711
1365-2966

Volume Title

470

Publisher

Oxford Univeristy Press
Sponsorship
Science and Technology Facilities Council (ST/N000927/1)
European Research Council (279973)
Royal Society (UF140298)
During the period of these observations the James Clerk Maxwell Telescope was operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada and the Netherlands Organisation for Pure Research. Additional funds for the construction of SCUBA-2 were provided by the Canada Foundation for Innovation. MCW acknowledges the support of the European Union through ERC grant number 279973. GMK is supported by the Royal Society as a Royal Society University Research Fellow. MB acknowledges support from a FONDECYT Postdoctoral Fellowship, project no. 3140479 and the Deutsche Forschungsgemeinschaft through project Kr 2164/15-1. JPM is supported by a UNSW Vice Chancellor’s postdoctoral research fellowship. The work of OP is supported by the Royal Society through a Royal Society Dorothy Hodgkin fellowship. GJW gratefully acknowledges support from the Leverhulme Trust.