ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION
dc.contributor.author | Kim, Arlene KH | en |
dc.contributor.author | Guntuboyina, Adityanand | en |
dc.contributor.author | Samworth, Richard | en |
dc.date.accessioned | 2017-09-28T16:48:07Z | |
dc.date.available | 2017-09-28T16:48:07Z | |
dc.date.issued | 2018-10 | en |
dc.identifier.issn | 0090-5364 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/267439 | |
dc.description.abstract | The log-concave maximum likelihood estimator of a density on the real line based on a sample of size n is known to attain the minimax optimal rate of convergence of O(n −4/5 ) with respect to, e.g., squared Hellinger distance. In this paper, we show that it also enjoys attractive adaptation properties, in the sense that it achieves a faster rate of convergence when the logarithm of the true density is k-affine (i.e. made up of k affine pieces), or close to k-affine, provided in each case that k is not too large. Our results use two different techniques: the first relies on a new Marshall’s inequality for log-concave density estimation, and reveals that when the true density is close to log-linear on its support, the log-concave maximum likelihood estimator can achieve the parametric rate of convergence in total variation distance. Our second approach depends on local bracketing entropy methods, and allows us to prove a sharp oracle inequality, which implies in particular a risk bound with respect to various global loss functions, including Kullback–Leibler divergence, of O k n log5/4 (en/k) when the true density is log-concave and its logarithm is close to k-affine. | |
dc.description.sponsorship | AKH Kim: National Research Foundation of Korea (NRF) grant 2017R1C1B5017344. A Guntuboyina: NSF Grant DMS-1309356. RJ Samworth: EPSRC Early Career Fellowship and a grant from the Leverhulme Trust. | |
dc.publisher | Institute of Mathematical Statistics | |
dc.subject | Adaptation | en |
dc.subject | bracketing entropy | en |
dc.subject | log-concavity | en |
dc.subject | maximum likelihood estimation | en |
dc.subject | Marshall's inequality | en |
dc.title | ADAPTATION IN LOG-CONCAVE DENSITY ESTIMATION | en |
dc.type | Article | |
prism.endingPage | 2306 | |
prism.issueIdentifier | 5 | en |
prism.publicationDate | 2018 | en |
prism.publicationName | ANNALS OF STATISTICS | en |
prism.startingPage | 2279 | |
prism.volume | 46 | en |
dc.identifier.doi | 10.17863/CAM.11980 | |
dcterms.dateAccepted | 2017-07-24 | en |
rioxxterms.versionofrecord | 10.1214/17-AOS1619 | en |
rioxxterms.version | AM | * |
rioxxterms.licenseref.uri | http://www.rioxx.net/licenses/all-rights-reserved | en |
rioxxterms.licenseref.startdate | 2018-10 | en |
dc.contributor.orcid | Samworth, Richard [0000-0003-2426-4679] | |
rioxxterms.type | Journal Article/Review | en |
pubs.funder-project-id | EPSRC (EP/J017213/1) | |
pubs.funder-project-id | Leverhulme Trust (PLP-2014-353) | |
pubs.funder-project-id | LANCASTER UNIVERSITY (FB EPSRC) (EP/N031938/1) | |
pubs.funder-project-id | Alan Turing Institute (unknown) | |
cam.orpheus.success | Thu Jan 30 13:04:48 GMT 2020 - The item has an open VoR version. | * |
rioxxterms.freetoread.startdate | 2100-01-01 |