Environmental Bacteriophages of the Emerging Enterobacterial Phytopathogen, Dickeya solani, Show Genomic Conservation and Capacity for Horizontal Gene Transfer between Their Bacterial Hosts
Journal Title
Frontiers in Microbiology
ISSN
1664-302X
Publisher
Frontiers Media
Volume
8
Number
1654
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Day, A., Ahn, J., Fang, X., & Salmond, G. (2017). Environmental Bacteriophages of the Emerging Enterobacterial Phytopathogen, Dickeya solani, Show Genomic Conservation and Capacity for Horizontal Gene Transfer between Their Bacterial Hosts. Frontiers in Microbiology, 8 (1654)https://doi.org/10.3389/fmicb.2017.01654
Abstract
Dickeya solani is an economically important phytopathogen widespread in mainland Europe that can reduce potato crop yields by 25%. There are no effective environmentally-acceptable chemical systems available for diseases caused by Dickeya. Bacteriophages have been suggested for use in biocontrol of this pathogen in the field, and limited field trials have been conducted. To date only a small number of bacteriophages capable of infecting D. solani have been isolated and characterized, and so there is a need to expand the repertoire of phages that may have potential utility in phage therapy strategies. Here we describe 67 bacteriophages from environmental sources, the majority of which are members of the viral family Myoviridae. Full genomic sequencing of two isolates revealed a high degree of DNA identity with D. solani bacteriophages isolated in Europe in the past 5 years, suggesting a wide ecological distribution of this phage family. Transduction experiments showed that the majority of the new environmental bacteriophages are capable of facilitating efficient horizontal gene transfer. The possible risk of unintentional transfer of virulence or antibiotic resistance genes between hosts susceptible to transducing phages cautions against their environmental use for biocontrol, until specific phages are fully tested for transduction capabilities.
Keywords
Dickeya solani, bacteriophage, environmental viruses, phytopathogen, horizontal gene transfer
Sponsorship
This work was supported by the BBSRC, UK. AD was supported by a Cambridge Doctoral Training Partnership Award from the BBSRC, UK.
Funder references
BBSRC (1497810)
BBSRC (BB/G000298/1)
BBSRC (BB/N008081/1)
BBSRC (BB/H002677/1)
Identifiers
External DOI: https://doi.org/10.3389/fmicb.2017.01654
This record's URL: https://www.repository.cam.ac.uk/handle/1810/267879
Rights
Attribution 4.0 International, Attribution 4.0 International, Attribution 4.0 International, Attribution 4.0 International, Attribution 4.0 International
Recommended or similar items
The following licence files are associated with this item: