Repository logo
 

The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana.

Published version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Chaparro-Garcia, Angela 
Wilkinson, Rachael C 
Gimenez-Ibanez, Selena 
Findlay, Kim 
Coffey, Michael D 

Abstract

BACKGROUND: The filamentous oomycete plant pathogen Phytophthora infestans causes late blight, an economically important disease, on members of the nightshade family (Solanaceae), such as the crop plants potato and tomato. The related plant Nicotiana benthamiana is a model system to study plant-pathogen interactions, and the susceptibility of N. benthamiana to Phytophthora species varies from susceptible to resistant. Little is known about the extent to which plant basal immunity, mediated by membrane receptors that recognise conserved pathogen-associated molecular patterns (PAMPs), contributes to P. infestans resistance. PRINCIPAL FINDINGS: We found that different species of Phytophthora have varying degrees of virulence on N. benthamiana ranging from avirulence (incompatible interaction) to moderate virulence through to full aggressiveness. The leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1/SERK3 is a major modulator of PAMP-triggered immunity (PTI) in Arabidopsis thaliana and N. benthamiana. We cloned two NbSerk3 homologs, NbSerk3A and NbSerk3B, from N. benthamiana based on sequence similarity to the A. thaliana gene. N. benthamiana plants silenced for NbSerk3 showed markedly enhanced susceptibility to P. infestans infection but were not altered in resistance to Phytophthora mirabilis, a sister species of P. infestans that specializes on a different host plant. Furthermore, silencing of NbSerk3 reduced the cell death response triggered by the INF1, a secreted P. infestans protein with features of PAMPs. CONCLUSIONS/SIGNIFICANCE: We demonstrated that N. benthamiana NbSERK3 significantly contributes to resistance to P. infestans and regulates the immune responses triggered by the P. infestans PAMP protein INF1. In the future, the identification of novel surface receptors that associate with NbSERK3A and/or NbSERK3B should lead to the identification of new receptors that mediate recognition of oomycete PAMPs, such as INF1.

Description

Keywords

Host-Pathogen Interactions, Molecular Sequence Data, Phytophthora infestans, Plant Diseases, Plant Immunity, Protein Serine-Threonine Kinases, Nicotiana

Journal Title

PLoS One

Conference Name

Journal ISSN

1932-6203
1932-6203

Volume Title

6

Publisher

Public Library of Science (PLoS)