Repository logo
 

Developing breakage models relating morphological data to the milling behaviour of flame synthesised titania particles

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Abstract

© 2017 Elsevier Ltd A detailed population balance model is used to relate the reactor conditions of flame synthesised titanium dioxide particles to their milling behaviour. Breakage models are developed that utilise morphological data captured by a detailed particle model to relate the structure of aggregate particles to their size-reduction behaviour in the post-synthesis milling process. Simulations of a laboratory-scale hot wall reactor are consistent with experimental data and milling curves predicted by the breakage models exhibit features consistent with experimental observations. The selected breakage model considers the overall fractal structure of the aggregate particles as well as the neck size between neighbouring primary particles. Application of the model to particles produced under different reactor residence times and temperatures demonstrates that the model can be used to relate reactor conditions to the milling performance of titanium dioxide particles.

Description

Keywords

Titania, Population balance, Breakage, Milling

Journal Title

Chemical Engineering Science

Conference Name

Journal ISSN

0009-2509
1873-4405

Volume Title

166

Publisher

Elsevier BV