Repository logo
 

Targeted β-Phase Formation in Poly(fluorene)-Ureasil Grafted Organic-Inorganic Hybrids

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Meazzini, I 
Behrendt, JM 
Turner, ML 

Abstract

© 2017 American Chemical Society. The development of synthetic strategies to control the molecular organization (and inherently linked optoelectronic properties) of conjugated polymers is critical for the development of efficient light-emitting devices. Here, we report a facile route using sol-gel chemistry to promote the formation of the β-phase through the covalent-grafting of poly[(9,9-dioctylfluorene)-co-(9,9-bis(8-hydroxyoctyl)fluorene)] (PFO-OH) to poly(oxyalkylene)/siloxane hybrids known as ureasils, due to the urea linkages binding the organic and inorganic components. Although grafting occurs within the siliceous domains, the degree of branching of the organic backbone determines the packing of the PFO-OH chains within the ureasil framework. Moreover, photoluminescence studies indicate that physical confinement also plays a key role in promoting the evolution of the β-phase of PFO-OH as the sol-gel transition proceeds. Spectroscopic and structural analyses reveal that dibranched ureasils promote linear packing of the PFO-OH chains, while tribranched ureasils exhibit a more open, distorted structure that restricts the packing efficacy and reduces the number of covalent anchorages. These results indicate that the organic-inorganic hybrid structure induces distinct levels of β-phase formation and that covalent grafting is a versatile approach to design novel poly(fluorene) hybrid materials with tailored optical properties.

Description

Keywords

40 Engineering, 3403 Macromolecular and Materials Chemistry, 4016 Materials Engineering, 34 Chemical Sciences

Journal Title

Macromolecules

Conference Name

Journal ISSN

0024-9297
1520-5835

Volume Title

50

Publisher

American Chemical Society (ACS)
Sponsorship
Engineering and Physical Sciences Research Council (EP/K03099X/1)
Relationships
Is supplemented by: