Show simple item record

dc.contributor.authorNivarti, Girish Venkata
dc.date.accessioned2018-01-04T16:30:01Z
dc.date.available2018-01-04T16:30:01Z
dc.date.issued2017-09-28
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/270335
dc.description.abstractIn the present thesis, the sensitivity of flame propagation to the turbulent motion of burning gases is investigated. The long-standing issue of the 'bending effect' is focused upon, which refers to the experimentally-observed inhibition of flame propagation velocity at high intensities of turbulence. Plausible mechanisms for the bending effect are investigated by isolating systematically the effects of turbulence intensity. By providing a novel perspective on this topic, the thesis addresses the fundamental limits of turbulent burning. The investigation employs Direct Numerical Simulation (DNS), which enables the basic conditions of burning to be controlled directly. A parametric DNS dataset is designed and generated by increasing turbulence intensity over five separate simulations. Effects of turbulent motion are isolated in this manner, such that the bending effect is reproduced in the variation of flame propagation velocity recorded. Subsequently, the validity of Damköhler's hypotheses is investigated to ascertain the mechanism of bending. Analysis of the DNS dataset highlights the significance of kinematic flame response in determining turbulent flame propagation. Damköhler's first hypothesis is found to be valid throughout the dataset, suggesting that the bending effect may be a consequence of self-regulation of the flame surface. This contradicts the dominant belief that bending occurs as a result of flame surface disruption by the action of turbulence. Damköhler's second hypothesis is found to be valid in a relatively limited regime within the dataset, its validity governed by flame-induced effects on the prescribed turbulent flow field. Therefore, this thesis presents turbulent flame propagation and the bending effect as emergent from the dynamics of a flame surface that retains its internal thermo-chemical structure. Finally, experimental validation is sought for the proposed mechanisms of bending. Comparisons have been initiated with measurements in the Leeds explosion vessel, based on which the widely accepted mechanism of bending was hypothesized twenty-five years ago. Modifications to the DNS framework warranted by this comparison have aided the development of novel computationally-efficient algorithms. The ongoing work may yield insights into the key mechanism of the bending effect in turbulent flame propagation.
dc.description.sponsorshipCambridge International Scholarship
dc.language.isoen
dc.rightsNo Creative Commons licence (All rights reserved)
dc.subjectTurbulence
dc.subjectFlame propagation
dc.subjectBending effect
dc.subjectDirect Numerical Simulation
dc.subjectPremixed Flames
dc.titleThe bending effect in turbulent flame propagation
dc.typeThesis
dc.type.qualificationlevelDoctoral
dc.type.qualificationnameDoctor of Philosophy (PhD)
dc.publisher.institutionUniversity of Cambridge
dc.publisher.departmentEngineering
dc.date.updated2018-01-04T15:44:07Z
dc.identifier.doi10.17863/CAM.17198
dc.contributor.orcidNivarti, Girish Venkata [0000-0002-8326-1147]
dc.publisher.collegeDarwin
dc.type.qualificationtitlePhD in Engineering
cam.supervisorCant, Robert Stewart
rioxxterms.freetoread.startdate2018-01-04


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record