Repository logo
 

NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment

Published version
Peer-reviewed

Type

Article

Change log

Authors

Reynolds, N 
Latos, P 
Hynes-Allen, A 
Loos, R 
Leaford, D 

Abstract

Transcriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional variability in yeast and to be important for mammalian ESC lineage commitment. Here we show that the Nucleosome Remodeling and Deacetylation (NuRD) complex, which is required for ESC lineage commitment, modulates both transcriptional heterogeneity and the dynamic range of a set of pluripotency genes in ESCs. In self-renewing conditions, the influence of NuRD at these genes is balanced by the opposing action of self-renewal factors. Upon loss of self-renewal factors, the action of NuRD is sufficient to silence transcription of these pluripotency genes, allowing cells to exit self-renewal. We propose that modulation of transcription levels by NuRD is key to maintaining the differentiation responsiveness of pluripotent cells.

Description

Keywords

Journal Title

Cell Stem Cell

Conference Name

Journal ISSN

Volume Title

10

Publisher

Elsevier
Sponsorship
Wellcome Trust (081816/B/06/Z)
Wellcome Trust (081816/B/06/A)