Repository logo
 

Spatiotemporal Self-Organization of Fluctuating Bacterial Colonies.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Grafke, Tobias 
Cates, Michael E 
Vanden-Eijnden, Eric 

Abstract

We model an enclosed system of bacteria, whose motility-induced phase separation is coupled to slow population dynamics. Without noise, the system shows both static phase separation and a limit cycle, in which a rising global population causes a dense bacterial colony to form, which then declines by local cell death, before dispersing to reinitiate the cycle. Adding fluctuations, we find that static colonies are now metastable, moving between spatial locations via rare and strongly nonequilibrium pathways, whereas the limit cycle becomes almost periodic such that after each redispersion event the next colony forms in a random location. These results, which hint at some aspects of the biofilm-planktonic life cycle, can be explained by combining tools from large deviation theory with a bifurcation analysis in which the global population density plays the role of control parameter.

Description

Keywords

Bacteria, Models, Biological, Population Dynamics

Journal Title

Phys Rev Lett

Conference Name

Journal ISSN

0031-9007
1079-7114

Volume Title

119

Publisher

American Physical Society (APS)
Sponsorship
Royal Society (RP080053)