Show simple item record

dc.contributor.authorKan, Bin
dc.contributor.authorZhang, Jiangbin
dc.contributor.authorLiu, Feng
dc.contributor.authorWan, Xiangjian
dc.contributor.authorLi, Chenxi
dc.contributor.authorKe, Xin
dc.contributor.authorWang, Yunchuang
dc.contributor.authorFeng, Huanran
dc.contributor.authorZhang, Yamin
dc.contributor.authorLong, Guankui
dc.contributor.authorFriend, Richard H
dc.contributor.authorBakulin, Artem A
dc.contributor.authorChen, Yongsheng
dc.date.accessioned2018-02-23T18:51:45Z
dc.date.available2018-02-23T18:51:45Z
dc.date.issued2018-01
dc.identifier.issn0935-9648
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/273527
dc.description.abstractOrganic solar cell optimization requires careful balancing of current-voltage output of the materials system. Here, such optimization using ultrafast spectroscopy as a tool to optimize the material bandgap without altering ultrafast photophysics is reported. A new acceptor-donor-acceptor (A-D-A)-type small-molecule acceptor NCBDT is designed by modification of the D and A units of NFBDT. Compared to NFBDT, NCBDT exhibits upshifted highest occupied molecular orbital (HOMO) energy level mainly due to the additional octyl on the D unit and downshifted lowest unoccupied molecular orbital (LUMO) energy level due to the fluorination of A units. NCBDT has a low optical bandgap of 1.45 eV which extends the absorption range toward near-IR region, down to ≈860 nm. However, the 60 meV lowered LUMO level of NCBDT hardly changes the Voc level, and the elevation of the NCBDT HOMO does not have a substantial influence on the photophysics of the materials. Thus, for both NCBDT- and NFBDT-based systems, an unusually slow (≈400 ps) but ultimately efficient charge generation mediated by interfacial charge-pair states is observed, followed by effective charge extraction. As a result, the PBDB-T:NCBDT devices demonstrate an impressive power conversion efficiency over 12%-among the best for solution-processed organic solar cells.
dc.format.mediumPrint-Electronic
dc.languageeng
dc.publisherWiley
dc.titleFine-Tuning the Energy Levels of a Nonfullerene Small-Molecule Acceptor to Achieve a High Short-Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells.
dc.typeArticle
prism.issueIdentifier3
prism.publicationDate2018
prism.publicationNameAdv Mater
prism.volume30
dc.identifier.doi10.17863/CAM.20603
dcterms.dateAccepted2017-10-24
rioxxterms.versionofrecord10.1002/adma.201704904
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2018-01
dc.contributor.orcidBakulin, Artem A [0000-0002-3998-2000]
dc.contributor.orcidChen, Yongsheng [0000-0003-1448-8177]
dc.identifier.eissn1521-4095
rioxxterms.typeJournal Article/Review
cam.issuedOnline2017-12-04
rioxxterms.freetoread.startdate2018-12-04


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record