Repository logo
 

Novel Proteases That Regulate Interleukin-1 Alpha Activity During Inflammation And Senescence


Type

Thesis

Change log

Authors

Wiggins, Kimberley Anne 

Abstract

Interleukin-1 alpha (IL-1a) is a powerful inflammatory cytokine that modulates both innate and adaptive immunity. As such, IL-1a is implicated in the development of multiple inflammatory and autoimmune diseases including atherosclerosis, arthritis and cancer. Therefore, understanding the mechanisms that regulate IL-1a activity is extremely important.
For many years, pro-IL-1a was considered to be a fully active alarmin. However, we have previously shown that the removal of the pro-domain by calpain, a protease that is activated upon necrosis, significantly increases IL-1a bioactivity. The work presented in this thesis demonstrates that multiple proteases from diverse biological systems cleave and activate IL-1a. We therefore suggest that IL-1a is an important signalling hub that integrates diverse proteolytic danger signals to alert the immune system.
In particular we have identified the inflammatory caspase, caspase-5, as a novel and potent activator of IL-1a. We show that caspase-5 directly cleaves pro-IL-1a during the activation of the non-canonical inflammasome by cytosolic LPS, which mimics intracellular bacterial infection. We also demonstrate that caspase-5-cleaved IL-1a mediates the senescence-associated secretory phenotype (SASP), which drives the deleterious effects of senescent cells in multiple age-related diseases. Therefore, therapeutically targeting caspase-5 may be of interest for pathologies mediated by the non-canonical inflammasome and/or senescent cells. Finally we find that rs17561, a common IL1A polymorphism, reduces active IL-1a release. We find that blood from minor allele homozygotes releases significantly less IL-1a than major allele homozygotes upon LPS stimulation. Therefore, genotyping patients under consideration for anti-IL-1a therapy could predict who would be likely to respond well to the treatment.
In conclusion, the work presented in this thesis enhances our understanding of how IL-1a activity is regulated. The identification of both the caspase-5-mediated pathway of IL-1a activation and the defect conferred by the rs17561 SNP could have important clinical implications for the treatment of multiple inflammatory diseases.

Description

Date

2018-02-26

Advisors

Clarke, Murray

Keywords

Inflammasomes, Cytokines, IL-1, Immunity, Inflammation, Single Nucleotide Polymorphisms, Senescence, Caspase, Proteases

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
My PhD was generously funded by the British Heart Foundation.