Repository logo
 

High-performance transistors for bioelectronics through tuning of channel thickness.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Rivnay, Jonathan 
Leleux, Pierre 
Ferro, Marc 
Sessolo, Michele 
Williamson, Adam 

Abstract

UNLABELLED: Despite recent interest in organic electrochemical transistors (OECTs), sparked by their straightforward fabrication and high performance, the fundamental mechanism behind their operation remains largely unexplored. OECTs use an electrolyte in direct contact with a polymer channel as part of their device structure. Hence, they offer facile integration with biological milieux and are currently used as amplifying transducers for bioelectronics. Ion exchange between electrolyte and channel is believed to take place in OECTs, although the extent of this process and its impact on device characteristics are still unknown. We show that the uptake of ions from an electrolyte into a film of poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate ( PEDOT: PSS) leads to a purely volumetric capacitance of 39 F/cm(3). This results in a dependence of the transconductance on channel thickness, a new degree of freedom that we exploit to demonstrate high-quality recordings of human brain rhythms. Our results bring to the forefront a transistor class in which performance can be tuned independently of device footprint and provide guidelines for the design of materials that will lead to state-of-the-art transistor performance.

Description

Keywords

Organic electronics, bioelectronics, electrochemical transistors

Journal Title

Sci Adv

Conference Name

Journal ISSN

2375-2548
2375-2548

Volume Title

1

Publisher

American Association for the Advancement of Science (AAAS)