Repository logo
 

A new concept of a hybrid trapped field magnet lens

Published version
Peer-reviewed

Change log

Abstract

In this paper, a new concept of a hybrid trapped field magnet lens (HTFML) is proposed. The HTMFL exploits the “vortex pinning effect” of an outer superconducting bulk cylinder, which is magnetized as a trapped field magnet (TFM) using field-cooled magnetization (FCM), and the “diamagnetic shielding effect” of an inner bulk magnetic lens to generate a concentrated magnetic field higher than the trapped field from the TFM in the bore of the magnetic lens. This requires that, during the FCM process, the outer cylinder is in the normal state (T > superconducting transition temperature, Tc) and the inner lens is in the superconducting state (T < Tc) when the external magnetizing field is applied, followed by cooling to an appropriate operating temperature, then removing the external field. This is explored for two potential cases: 1) exploiting the difference in Tc of two different bulk materials (“case-1”), e.g. MgB2 (Tc = 39 K) and GdBaCuO (Tc = 92 K) or 2) using the same material for the whole HTFML, e.g., GdBaCuO, but utilizing individually-controlled cryostats, the same cryostat with different cooling loops or coolants, or heaters that keep the outer bulk cylinder at a temperature above Tc to achieve the same desired effect. The HTFML is verified using numerical simulations for “case-1” using an MgB2 cylinder and GdBaCuO lens pair and for “case-2” using a GdBaCuO cylinder and GdBaCuO lens pair. As a result, the HTFML could reliably generate a concentrated magnetic field Bc = 4.73 T with the external magnetizing field Bapp = 3 T in the “case-1, and a higher Bc = 13.49 T with higher Bapp = 10 T in the “case-2,” respectively. This could, for example, be used to enhance the magnetic field in the bore of a bulk superconducting NMR/MRI system to improve its resolution.

Description

Keywords

hybrid trapped field magnet lens, bulk superconductors, trapped field magnets, magnetic lens, vortex pinning effect, diamagnetic shielding effect, finite element

Journal Title

Superconductor Science and Technology

Conference Name

Journal ISSN

0953-2048
1361-6668

Volume Title

31

Publisher

IOP Publishing
Sponsorship
Engineering and Physical Sciences Research Council (EP/P020313/1)
Japan Society for the Promotion of Science (15K04646)