Repository logo
 

Reinforcement Learning and Reward Estimation for Dialogue Policy Optimisation


Type

Thesis

Change log

Authors

Su, Pei-Hao 

Abstract

Modelling dialogue management as a reinforcement learning task enables a system to learn to act optimally by maximising a reward function. This reward function is designed to induce the system behaviour required for goal-oriented applications, which usually means fulfilling the user’s goal as efficiently as possible. However, in real-world spoken dialogue systems, the reward is hard to measure, because the goal of the conversation is often known only to the user. Certainly, the system can ask the user if the goal has been satisfied, but this can be intrusive. Furthermore, in practice, the reliability of the user’s response has been found to be highly variable. In addition, due to the sparsity of the reward signal and the large search space, reinforcement learning-based dialogue policy optimisation is often slow. This thesis presents several approaches to address these problems.

To better evaluate a dialogue for policy optimisation, two methods are proposed. First, a recurrent neural network-based predictor pre-trained from off-line data is proposed to estimate task success during subsequent on-line dialogue policy learning to avoid noisy user ratings and problems related to not knowing the user’s goal. Second, an on-line learning framework is described where a dialogue policy is jointly trained alongside a reward function modelled as a Gaussian process with active learning. This mitigates the noisiness of user ratings and minimises user intrusion. It is shown that both off-line and on-line methods achieve practical policy learning in real-world applications, while the latter provides a more general joint learning system directly from users.

To enhance the policy learning speed, the use of reward shaping is explored and shown to be effective and complementary to the core policy learning algorithm. Furthermore, as deep reinforcement learning methods have the potential to scale to very large tasks, this thesis also investigates the application to dialogue systems. Two sample-efficient algorithms, trust region actor-critic with experience replay (TRACER) and episodic natural actor-critic with experience replay (eNACER), are introduced. In addition, a corpus of demonstration data is utilised to pre-train the models prior to on-line reinforcement learning to handle the cold start problem. Combining these two methods, a practical approach is demonstrated to effectively learn deep reinforcement learning-based dialogue policies in a task-oriented information seeking domain.

Overall, this thesis provides solutions which allow truly on-line and continuous policy learning in spoken dialogue systems.

Description

Date

2018-05-08

Advisors

Young, Steve

Keywords

Spoken Dialogue Systems, Gaussian Processes, Neural Network, Policy Optimisation, On-line Learning, Reward Estimation, Reward Shaping, Active Learning, Reinforcement Learning, Deep Learning, Deep Reinforcement Learning, Reward Learning

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
Taiwan Cambridge Scholarship