Show simple item record

dc.contributor.authorMackinder, Luke CMen
dc.contributor.authorMeyer, Moritzen
dc.contributor.authorMettler-Altmann, Tabeaen
dc.contributor.authorChen, Vivian Ken
dc.contributor.authorMitchell, Madeline Cen
dc.contributor.authorCaspari, Oliveren
dc.contributor.authorFreeman Rosenzweig, Elizabeth Sen
dc.contributor.authorPallesen, Leifen
dc.contributor.authorReeves, Gregoryen
dc.contributor.authorItakura, Alanen
dc.contributor.authorRoth, Robynen
dc.contributor.authorSommer, Frederiken
dc.contributor.authorGeimer, Stefanen
dc.contributor.authorMühlhaus, Timoen
dc.contributor.authorSchroda, Michaelen
dc.contributor.authorGoodenough, Ursulaen
dc.contributor.authorStitt, Marken
dc.contributor.authorGriffiths, Howarden
dc.contributor.authorJonikas, Martin Cen
dc.date.accessioned2018-05-14T12:47:19Z
dc.date.available2018-05-14T12:47:19Z
dc.date.issued2016-05-24en
dc.identifier.issn0027-8424
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/275758
dc.description.abstractBiological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2 Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2 We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1's four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency.
dc.languageengen
dc.publisherNational Academy of Sciences
dc.rightsAll rights reserved*
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserved*
dc.subjectCO2-concentrating mechanismen
dc.subjectChlamydomonas reinhardtiien
dc.subjectRubiscoen
dc.subjectcarbon fixationen
dc.subjectpyrenoiden
dc.subjectCarbon Dioxideen
dc.subjectChlamydomonas reinhardtiien
dc.subjectOrganellesen
dc.subjectRibulose-Bisphosphate Carboxylaseen
dc.titleA repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.en
dc.typeArticle
prism.endingPage5963
prism.issueIdentifier21en
prism.publicationDate2016en
prism.publicationNameProceedings of the National Academy of Sciences of USAen
prism.startingPage5958
prism.volume113en
dc.identifier.doi10.17863/CAM.23023
dcterms.dateAccepted2016-04-07en
rioxxterms.versionofrecord10.1073/pnas.1522866113en
rioxxterms.versionAM*
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2016-05-24en
dc.contributor.orcidGriffiths, Howard [0000-0002-3009-6563]
dc.identifier.eissn1091-6490
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idBBSRC (BB/M007693/1)
cam.issuedOnline2016-05-10en


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record