Show simple item record

dc.contributor.authorDoran, Charles F
dc.contributor.authorKelly, Tyler L
dc.contributor.authorSalerno, Adriana
dc.contributor.authorSperber, Steven
dc.contributor.authorVoight, John
dc.contributor.authorWhitcher, Ursula
dc.date.accessioned2018-05-15T13:00:06Z
dc.date.available2018-05-15T13:00:06Z
dc.date.issued2018-10
dc.identifier.issn0021-2172
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/275809
dc.description.abstractWe prove that if two Calabi-Yau invertible pencils have the same dual weights, then they share a common factor in their zeta functions. By using Dwork cohomology, we demonstrate that this common factor is related to a hypergeometric Picard–Fuchs differential equation. The factor in the zeta function is defined over the rationals and has degree at least the order of the Picard–Fuchs equation. As an application, we relate several pencils of K3 surfaces to the Dwork pencil, obtaining new cases of arithmetic mirror symmetry.
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleZeta functions of alternate mirror Calabi–Yau families
dc.typeArticle
prism.endingPage705
prism.issueIdentifier2
prism.publicationDate2018
prism.publicationNameIsrael Journal of Mathematics
prism.startingPage665
prism.volume228
dc.identifier.doi10.17863/CAM.23075
dcterms.dateAccepted2018-02-12
rioxxterms.versionofrecord10.1007/s11856-018-1783-0
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2018-10
dc.identifier.eissn1565-8511
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/N004922/1)
cam.issuedOnline2018-09-26
cam.orpheus.successTue Oct 06 10:33:46 BST 2020 - The item has an open VoR version.
rioxxterms.freetoread.startdate2100-01-01


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International