Repository logo
 

The Physiology of Dementia: Network reorganisation in progressive non-fluent aphasia as a model of neurodegeneration


Type

Thesis

Change log

Authors

Cope, Thomas Edmund  ORCID logo  https://orcid.org/0000-0002-4751-1786

Abstract

The dementias are persistent or progressive disorders affecting more than one cognitive domain that interfere with an individual’s ability to function at work or home, and represent a decline from a previous level of function. In this thesis I consider the neurophysiology of dementia at a number of levels. I investigate the ways in which the connectivity and function of the brain predisposes to the specific focal patterns of neurodegeneration seen in the various dementias. I aim to identify the mesoscopic changes that occur in individuals with neurodegeneration and how these relate to their cognitive difficulties. I show how, by assessing patients in whom there is focal disruption of brain networks and observing the outcomes in comparison to controls, I can gain insight into the mechanisms by which the normal brain makes predictions and processes language. In Chapter 1, I set the scene for the focussed experimental investigations of model diseases by beginning with an introductory, clinically-focussed review that sets out the features, aetiology, management, epidemiology and prognosis of the dementias. This places these model diseases in the context of the broader clinical challenge posed by the dementias. In Chapter 2, I turn to ‘prototypical’ model diseases that represent neurodegenerative tauopathies with predominantly cortical (Alzheimer’s disease, AD) and subcortical (Progressive Supranuclear Palsy, PSP) disease burdens. I investigate the neurophysiological causes and consequences of Tau accumulation by combining graph theoretical analyses of resting state functional MR imaging and in vivo ‘Tau’ PET imaging using the ligand AV-1451. By relating Tau distribution to the functional connectome I provide in vivo evidence consistent with ‘prion-like’ trans-neuronal spread of Tau in AD but not PSP. This provides important validation of disease modification strategies that aim to halt or slow down the progression of AD by sequestration of pathological Tau in the synapse. In contrast, I demonstrate associations consistent with regional vulnerability to Tau accumulation due to metabolic demand and a lack of trophic support in PSP but not AD. With a cross-sectional approach, using Tau burden as a surrogate marker of disease severity, I then go on to show how the changes in functional connectivity that occur as disease progresses account for the contrasting cognitive phenotypes in AD and PSP. In advancing AD, functional connectivity across the whole brain becomes increasingly random and disorganised, accounting for symptomatology across multiple cognitive domains. In advancing PSP, by contrast, disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer passed through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Together, this resulted in increasingly modular processing with inter-network communication taking less direct paths, accounting for the bradyphrenia characteristic of the ‘subcortical dementias’. From chapter 3 onwards, I turn to the in-depth study of a model disease called non-fluent variant Primary Progressive Aphasia (nfvPPA). This disease has a clear clinical phenotype of speech apraxia and agrammatism, associated with a focal pattern of mild atrophy in frontal lobes. Importantly, general cognition is usually well preserved until late disease. In chapter 3 itself, I relate an experiment in which patients with nfvPPA and matched controls performed a receptive language task while having their brain activity recorded with magnetoencephalography. I manipulated expectations and sensory detail to explore the role of top-down frontal contributions to predictive processes in speech perception. I demonstrate that frontal neurodegeneration led to inflexible and excessively precise predictions, and that fronto-temporal interactions play a causal role in reconciling prior predictions with degraded sensory signals. The discussion here concentrates on the insights provided by neurodegenerative disease into the normal function of the brain in processing language. Overall, I demonstrate that higher level frontal mechanisms for cognitive and behavioural flexibility make a critical functional contribution to the hierarchical generative models underlying speech perception In chapter 4, I precisely define the sequence processing and statistical learning abilities of patients with nfvPPA in comparison to patients with non-fluent aphasia due to stroke and neurological controls. I do this by exposing participants to a novel, mixed-complexity artificial grammar designed to assess processing of increasingly complex sequencing relationships, and then assessing the degree of implicit rule learning. I demonstrate that agrammatic aphasics of two different aetiologies are not disproportionately impaired on complex sequencing relationships, and that the learning of phonological and non-linguistic sequences occurs independently in health and disease. In chapter 5, I summarise the synergies between the experimental chapters, and explain how I have applied a systems identification framework to a diverse set of experimental methods, with the common goal of defining the physiology of dementia. I then return to the results of chapter 3 with a clinical focus to explain how inflexible predictions can account for subjective speech comprehension difficulties, auditory processing abnormalities and (in synthesis with chapter 4) receptive agrammatism in nfvPPA.
Overall, this body of work has contributed to knowledge in several ways. It has achieved its tripartite aims by:

  1. Providing in vivo evidence consistent with theoretical models of trans-neuronal Tau spread (chapter 2), and a comprehensive clinical account of the previously poorly-understood receptive symptomatology of nfvPPA (chapter 5), thus demonstrating that systems neuroscience can provide a translational bridge between the molecular biology of dementia and clinical trials of therapies and medications. In this way, I begin to disentangle the network-level causes of neurodegeneration from its consequences.
  2. Providing evidence for a causal role for fronto-temporal interactions in language processing (chapter 3), and demonstrating domain separation of statistical learning between linguistic and non-linguistic sequences (chapter 4), thus demonstrating that studies of patients with neurodegenerative disease can further our understanding of normative brain function.
  3. Successfully integrating neuropsychology, behavioural psychophysics, functional MRI, structural MRI, magnetoencephalography and computational modelling to provide comprehensive research training, as the platform for a future research programme in the physiology of dementia.

Description

Date

2018-01-09

Advisors

Rowe, James Benedict
Davis, Matthew H

Keywords

Dementia, Aphasia, PNFA, nfvPPA, PSP, Alzheimer's disease, AD, Progressive supranuclear palsy, magnetoencephalography, MEG, EEG, MRI, PET, Tau, Language, Frontal lobe

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
Association of British Neurologists Patrick Berthoud Charitcable Trust