Repository logo
 

Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA

Published version
Peer-reviewed

Type

Article

Change log

Authors

Brusa, M 
Cresci, G 
Daddi, E 
Paladino, R 
Perna, M 

Abstract

We imaged, with ALMA and ARGOS/LUCI, the molecular gas and dust and stellar continuum in XID2028, which is an obscured quasi-stellar object (QSO) at z = 1.593, where the presence of a massive outflow in the ionised gas component traced by the [OIII]5007 emission has been resolved up to 10 kpc. This target represents a unique test case to study QSO feedback in action at the peak epoch of AGN-galaxy co-evolution. The QSO was detected in the CO(5 − 4) transition and in the 1.3 mm continuum at ~30 and ~20σ significance, respectively; both emissions are confined in the central (<2 kpc) radius area. Our analysis suggests the presence of a fast rotating molecular disc (v ~ 400 km s−1) on very compact scales well inside the galaxy extent seen in the rest-frame optical light (~10 kpc, as inferred from the LUCI data). Adding available measurements in additional two CO transitions, CO(2 − 1) and CO(3 − 2), we could derive a total gas mass of ~1010 M⊙, thanks to a critical assessment of CO excitation and the comparison with the Rayleigh–Jeans continuum estimate. This translates into a very low gas fraction (<5%) and depletion timescales of 40–75 Myr, reinforcing the result of atypical gas consumption conditions in XID2028, possibly because of feedback effects on the host galaxy. Finally, we also detect the presence of high velocity CO gas at ~5σ, which we interpret as a signature of galaxy-scale molecular outflow that is spatially coincident with the ionised gas outflow. XID2028 therefore represents a unique case in which the measurement of total outflowing mass, of ~500–800 M⊙ yr−1 including the molecular and atomic components in both the ionised and neutral phases, was attempted for a high-z QSO.

Description

Keywords

quasars: individual: XID2028, galaxies: star formation, galaxies: active, galaxies: ISM

Journal Title

Astronomy & Astrophysics

Conference Name

Journal ISSN

1432-0746

Volume Title

612

Publisher

EDP Sciences
Sponsorship
Science and Technology Facilities Council (ST/M001172/1)
Includes STFC and ERC grants.