Show simple item record

dc.contributor.authorStock, Michaelen
dc.contributor.authorHumphreys, MCSen
dc.contributor.authorSmith, VCen
dc.contributor.authorIsaia, Ren
dc.contributor.authorBrooker, RAen
dc.contributor.authorPyle, DMen
dc.date.accessioned2018-05-24T17:18:34Z
dc.date.available2018-05-24T17:18:34Z
dc.date.issued2018-12-01en
dc.identifier.issn0022-3530
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/276173
dc.description.abstractVolatile elements play an important role in many aspects of the physicochemical architecture of sub-volcanic plumbing systems, from the liquid line of descent to the dynamics of magma storage and eruption. However, it remains difficult to constrain the behaviour of magmatic volatiles on short timescales before eruption using established petrologic techniques (e.g. melt inclusions), specifically, in the final days to months of magma storage. This study presents a detailed model of pre-eruptive volatile behaviour in the Campi Flegrei system (Italy), through combined analyses of apatite crystals and glass. The deposits of eight eruptions were examined, covering the full spectrum of melt compositions, eruptive styles and periods of activity at Campi Flegrei in the past 15 kyr. Measured apatite compositions are compared with thermodynamic models that predict the evolution of the crystal compositions during different fractional crystallisation scenarios, including: (i) volatile-undersaturated conditions; (ii) H2O-saturated conditions; (iii) varying P-T conditions. The compositions of clinopyroxene-hosted and biotite-hosted apatite inclusions are consistent with crystallisation under volatile-undersaturated conditions that persisted until late in magmatic evolution. Apatite microphenocrysts show significantly more compositional diversity, interpreted to reflect a mixed cargo of crystals derived from volatile-undersaturated melts at depth and melts which have undergone cooling and degassing in discrete shallow-crustal magma bodies. Apatite microphenocrysts from lavas show some re-equilibration during cooling at the surface. Clinopyroxene-hosted melt inclusions within the samples typically contain 2-4 wt % H2O, indicating that they have been reset during temporary magma storage at 1-3 km depth, similar to the depth of sill emplacement during recent seismic crises at Campi Flegrei. Comparable apatite compositional trends are identified in each explosive eruption analysed, regardless of volume, composition or eruption timing. However, apatites from the different epochs of activity appear to indicate subtle changes in the H2O content of the parental melt feeding the Campi Flegrei system over time. This study demonstrates the potential utility of integrated apatite and glass analysis for investigating pre-eruptive volatile behaviour in apatite-bearing magmas.
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleTracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: Insights into pre-eruptive processes at Campi Flegrei, Italyen
dc.typeArticle
prism.endingPage2492
prism.issueIdentifier12en
prism.publicationDate2018en
prism.publicationNameJournal of Petrologyen
prism.startingPage2463
prism.volume59en
dc.identifier.doi10.17863/CAM.23457
rioxxterms.versionofrecord10.1093/petrology/egy020en
rioxxterms.versionVoR*
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2018-12-01en
dc.contributor.orcidStock, Michael [0000-0001-7208-4301]
dc.identifier.eissn1460-2415
rioxxterms.typeJournal Article/Reviewen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International