Show simple item record

dc.contributor.authorMunro, JP
dc.contributor.authorLister, JR
dc.date.accessioned2018-06-06T12:13:48Z
dc.date.available2018-06-06T12:13:48Z
dc.date.issued2018
dc.identifier.issn0022-1120
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/276664
dc.description.abstract<jats:p>Surface tension causes the edge of a fluid sheet to retract. If the sheet is also stretched along its edge then the flow and the rate of retraction are modified. A universal similarity solution for the Stokes flow in a stretched edge shows that the scaled shape of the edge is independent of the stretching rate, and that it decays exponentially to its far-field thickness. This solution justifies the use of a stress boundary condition in long-wavelength models of stretched viscous sheets, and gives the detailed shape of the edge of such a sheet, resolving the position of the sheet edge to the order of the thickness.</jats:p>
dc.publisherCambridge University Press (CUP)
dc.titleCapillary retraction of the edge of a stretched viscous sheet
dc.typeArticle
prism.publicationDate2018
prism.publicationNameJournal of Fluid Mechanics
dc.identifier.doi10.17863/CAM.23961
dcterms.dateAccepted2018-03-17
rioxxterms.versionofrecord10.1017/jfm.2018.252
rioxxterms.versionAM
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2018-04-03
dc.contributor.orcidMunro, James [0000-0003-2972-1314]
dc.identifier.eissn1469-7645
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEPSRC (1480471)
cam.issuedOnline2018-04-03
rioxxterms.freetoread.startdate2018-10-03


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record