Using geometric algebra to represent curvature in shell theory with applications to Starling resistors.
View / Open Files
Publication Date
2017-11Journal Title
R Soc Open Sci
ISSN
2054-5703
Publisher
The Royal Society
Volume
4
Issue
11
Pages
171212
Language
eng
Type
Article
This Version
VoR
Physical Medium
Electronic-eCollection
Metadata
Show full item recordCitation
Gregory, A., Agarwal, A., & Lasenby, J. (2017). Using geometric algebra to represent curvature in shell theory with applications to Starling resistors.. R Soc Open Sci, 4 (11), 171212. https://doi.org/10.1098/rsos.171212
Abstract
We present a novel application of rotors in geometric algebra to represent the change of curvature tensor that is used in shell theory as part of the constitutive law. We introduce a new decomposition of the change of curvature tensor, which has explicit terms for changes of curvature due to initial curvature combined with strain, and changes in rotation over the surface. We use this decomposition to perform a scaling analysis of the relative importance of bending and stretching in flexible tubes undergoing self-excited oscillations. These oscillations have relevance to the lung, in which it is believed that they are responsible for wheezing. The new analysis is necessitated by the fact that the working fluid is air, compared to water in most previous work. We use stereographic imaging to empirically measure the relative importance of bending and stretching energy in observed self-excited oscillations. This enables us to validate our scaling analysis. We show that bending energy is dominated by stretching energy, and the scaling analysis makes clear that this will remain true for tubes in the airways of the lung.
Relationships
Related research output: https://doi.org/10.17863/CAM.10363
Sponsorship
EPSRC (1463167)
Identifiers
External DOI: https://doi.org/10.1098/rsos.171212
This record's URL: https://www.repository.cam.ac.uk/handle/1810/276762
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The following licence files are associated with this item: